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Abstract

Loss aversion is one of the most widely used concepts in behavioral economics. We

conduct a large-scale, interdisciplinarymeta-analysis, to systematically accumulate knowl-

edge from numerous empirical estimates of the loss aversion coefficient reported from

1992 to 2017. We examine 607 empirical estimates of loss aversion from 150 articles in

economics, psychology, neuroscience, and several other disciplines. Our analysis indi-

cates that the mean loss aversion coefficient is 1.955 with a 95% probability that the true

value falls in the interval [1.820, 2.105]. We record several observable characteristics of

the study designs. Few characteristics are substantially correlated with differences in the

mean estimates.
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1 Introduction

Loss aversion is the empirical observation that decisions often reflect a larger distaste for po-

tential losses, compared to equal-sized gains, relative to a point of reference. Loss aversion is a

core feature of prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992;

Wakker, 2010), an explicitly descriptive model of choice under risk and uncertainty which

has been widely applied and cited.
1
The strength of aversion to loss compared to attraction

to gain is typically captured by a single parameter, _.

In his popular-science book, Kahneman (2011) writes that “the concept of loss aversion is

certainly the most significant contribution of psychology to behavioral economics” (p. 300).

Loss aversion has been widely applied to many types of economic decisions and analyses. It

is often applied in analyses of experimental decisions over monetary risks (as in the original

Kahneman and Tversky, 1979). However, the use of loss aversion and dependence on refer-

ence points has evolvedwell beyond its initial application. Applications include financial asset

prices (Barberis, 2013), the equity premium puzzle (Benartzi and Thaler, 1995), labor supply

decisions (Camerer et al., 1997), political power of entitlements change (Romer, 1996), majority

voting and politics (Alesina and Passarelli, 2019), sectoral trade policy behavior (Tovar, 2009),

and selling-buying price endowment effects in contingent valuation of nontraded goods (Er-

icson and Fuster, 2014; Tunçel and Hammitt, 2014). Loss aversion also features prominently

in behavioral industrial organization, in theories and evidence of responses to price changes

(Heidhues and Kőszegi, 2018).

Several different methods have been used to measure loss aversion. These include labo-

ratory experiments, representative panel surveys, analyses of natural data, and randomized

trials trying to change behavior. Loss aversion has been quantified for monetary outcomes as

well as for non-monetary outcomes, such as health (Attema, Brouwer and l’Haridon, 2013).

Other fields outside economics also utilize loss aversion, including neuroscience, psychiatry,

business and management, and transportation.

Given how widely the concept of loss aversion has been applied in economics and many

other social sciences, it is useful to have the best possible empirical answer about how large

loss aversion is, and how it varies. One of the first empirical estimates of _ is reported in

Tversky and Kahneman (1992). The authors elicit the preferences of 25 graduate students

from elite west-coast American universities using three sessions of unincentivized lottery-

choice experiments. The median _—no mean nor statistic of dispersion was reported—was

_ = 2.25 (Figure 1). Many analyses, to this day, cite this number as the typical degree of

loss aversion. For example, the value _ = 2.25 is used in numerical simulations of prospect

1
The 1979 paper is the most widely cited empirical economics paper published from 1970-2005 (see Table 2

in Kim, Morse and Zingales, 2006). Note also that Fishburn and Kochenberger (1979) documented loss aversion

in a different sample of preferences elicited for decision analysis.
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Figure 1: An example of prospect theory utility function. Notes: This is the specification (3) presented

in Section 2, 𝑈 (𝑥) = 𝑥𝛼 for 𝑥 ≥ 0 and 𝑈 (𝑥) = −_(−𝑥)𝛽 for 𝑥 < 0, with median parameters of _ = 2.25

and 𝛼 = 𝛽 = 0.88 reported in Tversky and Kahneman (1992).

theory in behavioral finance (e.g, Barberis, Huang and Santos, 2001; Barberis and Huang, 2001,

2008; Barberis and Xiong, 2009; Barberis, Mukherjee andWang, 2016; Barberis, Jin andWang,

2021). Of course, had Tversky and Kahneman initially reported a different value (e.g., 1.5)

these analyses might yield different findings. Some of these authors are well-aware of this

issue.

As noted in the latter study, “[...] these estimates are almost 30 years old and are based on

a small number of participants. Given that the values we assign to these parameters play a

significant role in our results, it seems prudent to base these values on a wide range of studies,

not just one.” (Barberis, Jin and Wang, 2021, p. 2665).
2

What is the best way to cumulate knowledge about _ after thirty years of research? Our

view is that meta-analysis is an indispensable tool for scientific cumulation. Meta-analysis

is a principled, reproducible, open-science method for accumulating scientific knowledge

(and also for detecting nonrandom selective reporting of evidence: Stanley, 2001; Stanley and

Doucouliagos, 2012). A meta-analysis uses a clearly specified method of sampling available

studies, coding evidence in a way that is comparable across studies, and summarizing both

regularity and variation across studies. The idea of synthesizing evidence from multiple stud-

ies dates back to the early 1900s (Pearson, 1904; Yates and Cochran, 1938), but the history of

2
It is not our contention that there is a consensus in the academic community around the estimate _ = 2.25,

though there may be some anchoring to that value (as we have just described). Our general contention is that

there is no consensus and lack of confidence in a uniform estimate. In fact, during one of the early presentations

of this paper at the Economic Science Association World Meeting in Vancouver in 2019, we elicited guesses of

our mean parameter. We incentivized the audience to guess correctly with a CA$50 dollar prize for the closest

guess. We have 37 guesses and 34 participants also reported their confidence levels (low, medium, or high).

Mean guesses (of the mean parameter) were 1.639 with standard deviation of 0.599. Of the 34 answers, 20 (58.8%)

reported low confidence in their guesses and nine (24.3%) fell between 1.8 and 2.1. See Online Appendix F for

the full distribution of the guesses.
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modern meta-analysis has its origin in the 1976 AERA presidential address by Gene V. Glass.

He introduced the term “meta-analysis” to refer to “the statistical analysis of a large collection

of analysis results from individual studies for the purpose of integrating the findings” (Glass,

1976, p. 3). It has been widely used in evidence-based practices in medicine and policy for

at least two decades (Gurevitch et al., 2018). However, meta-analysis has been mostly absent

from highly-selective journals in empirical economics.
3

This paper reports the results of a meta-analysis of empirical estimates of loss aversion.

The dataset comprises 607 estimates reported in 150 papers in economics, psychology, neu-

roscience, and several other disciplines.

The toolkit of meta-analysis can give the best available answers to three questions:

1. What is the central tendency in the distribution of _ estimates; and how much do they

vary?

2. Does measured _ vary systematically across different methods, definition of _, utility

specifications, domains of choice, and types of participants?

3. Is there evidence of selective reporting, or publication bias, which distorts reported

estimates of _ compared to the corpus of ideal evidence without such biases?

While the answers to these questions no doubt carry some intrinsic interest to researchers

interested in loss aversion, they also have practical validity. For one, this paper’s mean es-

timate of _ = 1.955 provides a much more informed value of loss aversion than the original

_ = 2.25 for researchers to use as an input in financial models (see above). The results can

help researchers do their work better in several other ways.

Imagine a researcher who is interested in loss aversion but not quite sure what steps to

take to measure it or to apply it. First, the researcher might ask: What method should I use to

measure _? What are the most popular methods? Does it make much difference which one

is used? Results on how estimated _’s vary with characteristics of the measurement method,

such as the type of the data (experimental or field), reward (monetary or non-monetary), spec-

ification of the utility function, and the definition of loss aversion, can guide the researcher.
4

3
Prominent meta-analyses in economics include value of a statistical life (Doucouliagos, Stanley and Giles,

2012; Doucouliagos, Stanley and Viscusi, 2014), intertemporal elasticity (Havránek, 2015; Havránek et al., 2015),

habit formation (Havránek, Rusnak and Sokolova, 2017), foreign direct investment (Iršová and Havránek, 2013),

minimum wage effects (Card and Krueger, 1995; Doucouliagos and Stanley, 2009), gender wage discrimination

(Stanley and Jarrell, 1998), microcredit interventions (Meager, 2022), behavior in dictator and ultimatum games

(Engel, 2011; Oosterbeek, Sloof and van de Kuilen, 2004), preferences for truth-telling (Abeler, Nosenzo and

Raymond, 2019), experimentally-measured discount rates (Matoušek, Havránek and Iršová, 2022), and present-

bias in Convex Time Budget experiments (Imai, Rutter and Camerer, 2021).

4
These methodological variations can also help us understand the mechanisms behind loss aversion, along

with process measures such as response times, psychophysiology, and neuroscientific data.
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Figure 2: Distribution of reported estimates of loss aversion coefficient. Notes: Bins for histogram
are 0.1 wide. Kernel density estimate of the distribution is superimposed, using the Gaussian kernel

with the Silverman’s rule of thumb for the bandwidth selection. There are 85 cases that report both

individual-level mean and median. We keep individual-level medians from these cases. The 𝑥-axis is

cut off at 6 for better visual rendering but the density estimation keeps five observations with _ > 6.

Second, the researcher may be doing a behavior change intervention leveraging the psy-

chology of loss aversion. Then she needs a specific estimate of _, or a plausible range of values,

to use to make a power calculation. Perhaps she is planning to prepay teacher bonuses, which

they can later lose, to motivate them to increase student test outcomes (Fryer et al., 2012). Is

_ = 2.25 a good guess or is there a better guess? Is there a more refined estimate of _ for

the subset of studies in the meta-analysis which are most like the one she is planning? Meta-

analysis can help here too.

Third, suppose the researcher has just read review articles about prospect theory and

reference-dependent preferences (e.g., Barberis, 2013; DellaVigna, 2009, 2018; O’Donoghue

and Sprenger, 2018). Those reviews have a “narrative” programmatic structure in which re-

sults of early and key studies raise fundamental questions that later studies are designed to

answer. The reader is usually left with an understanding of the historical intellectual tra-

jectory, and what the next wave of studies should try to understand better. The researcher

wonders, is anything important left out of the narrative? The meta-analysis helps answer this

question too. (However, the comparison and complementarities of meta-analysis and narra-

tive review are subtle and important, so we will return to them in the conclusion.)

Figure 2 shows the distribution of loss aversion coefficients _ in our dataset, where the

median value of the raw data points is 1.69 and the mean is 1.97. The distribution is right-

skewed and has a substantial mass (93.9%) on the range _ > 1, corresponding to loss aversion

(as opposed to loss tolerance, _ < 1). Applying a Bayesian hierarchical approach taking into

account the uncertainty surrounding the measurements, we find that the average _ in the lit-

erature lies between 1.7 and 1.9. Taking into account the fact that many papers reported more
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than one estimate (thus producing correlation among estimates), the average is between 1.8

and 2.1. We also examine whether observed heterogeneity in reported _ can be attributed to

some of the observable characteristics of the study design. The results do not show many

strong reliable effects.

Even to economists unfamiliar with meta-analysis, the method should be, in some ways,

familiar. It is essentially an application of econometric techniques to literature review (see

Stanley and Doucouliagos, 2012). Like for any empirical study, the greatest concern should

be the inclusion criteria of the dataset (i.e., selection). While our broad inclusion criteria are

independent of estimates of _, we have little control over publication decisions (which makes

papers more prominent and easier to find) and whether a study is written at all (i.e., “the file

drawer problem”; Rosenthal, 1979), which could be dependent on the values of estimated _.

We consider these issues and how they might affect our analysis by examining the correlation

between estimated _ and their standard errors and by inspecting the shape of distributions

of 𝑧-scores. As noted elsewhere, no technique, not even the alternative narrative review, can

address this issues perfectly (Borenstein et al., 2009). Meta-analysis at least has the tools to

examine these possible issues quantitatively.

Finally, we note an advantage of meta-analysis is that as new evidence arrives it can be

easily added to the previous corpus of studies and results can be quickly updated. To allow re-

searchers to achieve this purpose, we provide themost up-to-datematerials, the data, the anal-

ysis code, and the list of additional articles that were not included in our current meta-analysis

(e.g., articles that appeared after our cut-off for inclusion or mentioned by the original au-

thors), on the project repository at the Open Science Framework (https://osf.io/9un34/).

Related papers. There are two previous meta-analyses of loss aversion, to which we con-

tribute a newer and broader scope.
5

Neumann and Böckenholt (2014) conducted a meta-

analysis of 109 estimates of loss aversion from 33 studies about consumer brand choice. As

we do later in this paper, they use a multi-level, random-effects technique to account for vari-

ability of estimates, both within and between studies, of the logged-_ parameter. They report

a base model estimate of _ = 1.49 and an “enhanced model” estimate of _ = 1.73 account-

ing for sources of estimate variability. Perhaps because of their narrow focus on consumer

choice, their meta-regression controls explain nearly all of the variability within their data.

Notably, the use of external vs. internal reference points, estimates derived from models that

account for both heterogeneity in taste and process, and unpublished vs. published studies

are all associated with lower estimates of loss aversion.

5
Mrkva et al. (2020) ask a question similar to ours, examining how individual differences moderate the degree

of loss aversion. Their approach is different— they conduct five large-scale field surveys with a total of 17,720

subjects.

6
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A different approach was used by Walasek, Mullett and Stewart (2018) to understand het-

erogeneity in a narrow domain of mixed gain-loss financial lotteries. Their analysis used only

published experimental studies of mixed lotteries of gains and losses where original raw data

were available for reanalysis. Their corpus is 19 estimates from 17 articles.
6
Rather than meta-

analyzing estimates from the original papers, they re-estimated parameters for a single model

of cumulative prospect theory (i.e., power utility function with symmetric curvature, 𝛼 = 𝛽 ,

see equation (3) in Section 2) using the original data. Their random-effects meta-analysis on

the 19 estimates has an average _ = 1.31. Despite their rather strict restrictions, the authors

note that there are high levels of methodological variability between studies (their data is not

very useful in looking at this question within studies) in both estimates and procedures.

The rest of the paper is organized as follows. Section 2 introduces the concept of loss

aversion in prospect theory. Section 3 describes how we assembled the dataset of empirical

estimates of loss aversion. Section 4 provides results and Section 5 discusses their implications.

2 Loss Aversion

In this section, we briefly illustrate some typical definitions of loss aversion in prospect theory.

Consider a situationwhere an agentmakes a choice under risk between prospects with atmost

two distinct outcomes. This simplified structure still captures awide range of empirical studies

examined here. Let (𝑥, 𝑝;𝑦) denote a simple lottery, which gives outcome 𝑥 with probability 𝑝

and outcome𝑦 with probability 1−𝑝 (Abdellaoui, Bleichrodt and Paraschiv, 2007; Chateauneuf
and Wakker, 1999; Köbberling and Wakker, 2005). A key assumption of prospect theory is

that outcomes are evaluated as gains and losses relative to a reference point. For simplicity

of exposition, in this section, we assume the reference point to be 0, so that the sign of the

outcome indicates whether it is a gain or a loss. We call a lottery non-mixed if two outcomes

have the same sign (i.e., either 𝑥,𝑦 ≥ 0 or 𝑥,𝑦 ≤ 0) andmixed if one of the outcomes is positive

and the other outcome is negative. Without loss of generality, we assume that 𝑥 > 0 > 𝑦 when

we deal with a mixed lottery.

In this setup, both original prospect theory by Kahneman and Tversky (1979) (hereafter

OPT) and its modern incarnation, cumulative prospect theory of Tversky and Kahneman

(1992) (hereafter PT), postulate that the agent evaluates non-mixed prospects (𝑥, 𝑝;𝑦) with

6
Though not specifically excluded by the aforementioned criteria, the authors also excluded studies that relied

on adaptive questions because of concerns about how such techniques would affect their maximum likelihood

estimation procedures (i.e., Abdellaoui, Bleichrodt and l’Haridon, 2008; Wakker and Deneffe, 1996).
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𝑥 ≥ 𝑦 ≥ 0 or 𝑥 ≤ 𝑦 ≤ 0 by

𝑤𝑠 (𝑝)𝑈 (𝑥) + (1 −𝑤𝑠 (𝑝))𝑈 (𝑦), (1)

and mixed prospects (𝑥, 𝑝;𝑦) with 𝑥 > 0 > 𝑦 by

𝑤+(𝑝)𝑈 (𝑥) +𝑤−(1 − 𝑝)𝑈 (𝑦), (2)

where 𝑤𝑠
: [0, 1] → [0, 1] is a probability weighting function for gains (𝑠 = +) or for losses

(𝑠 = −), with 𝑤𝑠 (0) = 0 and 𝑤𝑠 (1) = 1, and 𝑈 : R → R is a strictly increasing utility

function satisfying 𝑈 (0) = 0. Tversky and Kahneman (1992) assume that the utility function

𝑈 and the probability weighting functions 𝑤+
and 𝑤−

exhibit diminishing sensitivity. Note

also that 𝑤+ = 𝑤−
is assumed under OPT, and expected utility is a special case of PT where

𝑤+(𝑝) = 𝑤−(𝑝) = 𝑝 for all 𝑝 ∈ [0, 1].
A particularly popular functional apparatus is the one using different power utility pa-

rameters for gains and losses, following the approach of Tversky and Kahneman (1992):

𝑈 (𝑥) =

𝑥𝛼 if 𝑥 ≥ 0

−_(−𝑥)𝛽 if 𝑥 < 0

(3)

where _ > 0 is the loss aversion coefficient, the target variable of interest in this study. Values

of _ > 1 are taken to indicate loss aversion, whereas values of _ < 1 indicate loss tolerance

(also referred to as “gain seeking”), with _ = 1 indicating loss neutrality. The utility function is

concave for gains and convex for losses, reflecting diminishing sensitivity, when 𝛼, 𝛽 ∈ (0, 1).
Notice that mixed prospects are necessary to identify loss aversion, since _ cancels out in

the evaluation of pure-loss prospects such as in equation (1). In this particular formulation, the

loss aversion parameter is dependent on the scale of the data, and thus not uniquely defined

due to scaling issues (see Wakker, 2010, Section 9.6, for a theoretical discussion). If, on the

other hand, the two power parameters are assumed to be identical, i.e. 𝛼 = 𝛽 , this issue does

not occur. It also does not occur for different utility parameters using alternative functional

forms, such as exponential utility (Köbberling and Wakker, 2005).

Beyond the popularity of the formulation provided above, it is important to note that

several different definitions have been proposed and used in the literature. Köbberling and

Wakker (2005) and Abdellaoui, Bleichrodt and Paraschiv (2007) provide extensive discussions

of such alternative definitions, which we summarize in Online Appendix B. Furthermore, un-

der PT decision weights (given by probability weighting functions𝑤+
and𝑤−

) naturally enter

the definition of loss aversion (Schmidt and Zank, 2005). The combination of different defi-

nitions with different functional forms for utility and weighting functions results in a large

8



variety of different formulations. Our strategy in this meta-analysis is simply to take the esti-

mate emerging from the formulation of the authors. We code the type of definition adopted,

to be able to determine the correlation of definitions and functional forms with estimates.

A definition thatmore clearly departs from the apparatus presented above is the expectation-

based reference-dependent model of Kőszegi and Rabin (2006, 2007). In this model, an agent

evaluates a consumption outcome 𝑥 by

𝑣 (𝑥 | 𝑟 ) =𝑚(𝑥) + `
(
𝑚(𝑥) −𝑚(𝑟 )

)
,

where the function𝑚 represents the direct utility from consumption and the function ` repre-

sents the “gain-loss” utility from departures from a reference point 𝑟 . In typical applications

of the model the consumption utility 𝑚 is assumed to be linear, so that 𝑚(𝑥) = 𝑥 , and a

piecewise-linear gain-loss utility function is adopted:

` (𝑧) =

[𝑧 if 𝑧 ≥ 0

_[𝑧 if 𝑧 < 0

where the parameter [ ≥ 0 captures the importance of the gain-loss utility relative to the

consumption utility, and _ again captures loss aversion.
7

3 Data

3.1 Identification and Selection of Relevant Studies

In order to deliver an unbiased meta-analysis, we first identified and selected relevant papers

following unambiguously specified inclusion criteria. The main criterion is to include “all

empirical papers that estimate a coefficient of loss aversion.” Note that, under this criterion,

we include papers that use choice data from laboratory or field experiments and also non-

experimental, naturally occurring data including stock prices, TV game shows, and surveys

on transportation.

We searched for relevant papers on the scientific citation indexing database Web of Sci-

ence. The initial search, made in the summer of 2017, returned a total hits of 1,547 papers. As

a first step of paper identification, we went through titles and abstracts and threw out 910 pa-

pers that were clearly irrelevant for our study. We then read the remaining papers, applied our

inclusion criteria based on the content, and then coded information (described in Section 3.2

below). We also used IDEAS/RePEc and Google Scholar to search for unpublished working

7
For small to modest-scale risks, consumption utility can be taken to be approximately linear (Kőszegi and

Rabin, 2007; Rabin, 2000).
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papers. Finally, we posted a message on the email list of the Economic Science Association to

ask for relevant papers (in February 2018).

In the initial search phase, we cast a net also to identify papers that estimate the degree of

loss aversion in riskless choices, through measuring the discrepancy between willingness-to-

pay (WTP) and willingness-to-accept (WTA). However, in reading many of these papers, we

discovered that while the authors had measuredWTP andWTA for a given item, they had not

intended to do so as a way to estimate the loss aversion coefficient. While it is straightforward

to impose a certain linear utility structure on such papers to recover a loss aversion coefficient,

we viewed it as problematic to impose our own assumptions on the work of others, and thus,

faced with no better option, did not include these papers.

The search and selection procedure is summarized in Online Appendix A.1. We identified

150 papers at the end of this process. Twenty papers are unpublished at the time of the initial

data collection (summer 2017).

3.2 Data Construction

We assembled the dataset for our meta-analysis by coding relevant information—estimates of

the loss aversion coefficient and the associated standard error, characteristics of the data, and

measurement methods. The primary variables of interest are estimates of the loss aversion

coefficient _. These estimates come in two different forms: (i) aggregate-level, where a single _
for the “representative” agent/subject is estimated by pooling data from all subjects in a study;

(ii) individual-level, where _ is estimated for each subject in a study and the summary statistics

of empirical distribution, typically mean or median, are reported. We have a dummy variable

capturing the type of reported estimates. We also coded standard errors (SEs) of parameter

estimates as a measure of the estimate’s uncertainty/precision and the study’s quality. All

conventional meta-analyses require SEs to calculate weighted averages and to correct for the

heteroskedasticity of meta-regression. Other measures of study quality, when known, can be

easily included in these weights. When SEs are not reported, we reconstructed them from

other available information such as standard deviation (SD), 𝑝-value (of the null hypothesis

of loss neutrality), or the inter-quartile range (IQR).
8

We also coded variables describing characteristics of the data and measurement meth-

ods. These variables include: type of the data (e.g., experimental, non-experimental, TV game

show); location of the experiment (e.g., laboratory, field, online); types of reward (e.g., real or

8
We calculated/approximated 68 SEs from other available information: 64 from IQR and sample size and four

from 𝑝-values. Use of the IQR to infer the SE of the mean (from an approximation of the standard deviation,

SD ≈ 1.35×IQR) is in principle only legitimate if the parameters are normally distributed in the population. That

assumption is clearly a stretch. Nevertheless, obtaining even an “approximate” SE seemed preferable to dropping

the observation entirely, or to making other, even stronger, assumptions allowing us to keep the observation.
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hypothetical, money, health, time); subject population (e.g., children, college students, gen-

eral population, farmers); definition of loss aversion coefficient (as described in Online Ap-

pendix B); utility specification (e.g., CRRA, CARA); and several others. Table A.1 in the Online

Appendix lists all variables coded in the study.

The set of papers we included spans a wide range of disciplines (see Table A.3 in the Online

Appendix). Since fields/journals have different reporting cultures and standards, we could

not always retrieve all the necessary information from reading papers. We thus emailed the

authors of the papers when some essential summary statistics of the loss aversion coefficient

or sample size information were missing.
9

While study quality is an ongoing concern for meta-analysis in general (and one that we

will revisit in our concluding section), we record quantitative values, such as each estimate’s

precision and the impact factor of the journal in which the study was published, as measures

of study quality in line with past precedent (Stanley and Doucouliagos, 2012). Meta-analyses

in economics routinely code several dimensions of research quality such as whether the study

accounts for endogeneity, is experimental, uses panel data, etc. These factors are then included

in a meta-regression to estimate the effects of study quality differences and to isolate the

findings from higher quality studies. Here, we recognize quality differences by coding the

impact factor of the journal where the study is published, the experimental nature of the

study, the subject pool, and the type of reward used.

3.3 Descriptive Statistics

We identified 150 articles that report an estimate of the loss aversion coefficient _. See Online

Appendix G for the full list of articles included in our meta-analysis. Among these, 130 articles

were published in 78 journal outlets (including eight articles published in the “Top 5” journals

in economics). The dataset includes papers from a variety of disciplines: economics, manage-

ment, psychology, neuroscience, medicine, psychiatry, agriculture, environment, transporta-

tion, and operations research (see the list of journals and their classifications in Table A.2 in

the Online Appendix).

We also identified where the data (either experimental or survey) were collected for 147

articles in the dataset. Most of these articles report estimates from data collected in a single

country. Ten of them collected data from two to three countries/regions, and three of them

(l’Haridon and Vieider, 2019; Rieger, Wang andHens, 2017;Wang, Rieger andHens, 2017) con-

ducted large-scale cross-country studies, collecting data frommore than 30 countries/regions.

9
We contacted the authors of 51 papers asking for additional clarification on 175 estimates (i.e., mean, SE, or

the number of observations). If the authors did not respond to our initial request, we sent an additional email.

Overall, we received 39 responses. Of those, 28 responses were ultimately useful and we recovered additional

information on 78 estimates. The remainder had to be imputed.
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Table 1: Study characteristics.

Freq. % Freq. %

Total number of studies 185 100.0

Data type Reward type
Lab experiment 98 53.0 Money 154 83.2

Field experiment 29 15.7 Other 14 7.6

Other field data 20 10.8 Consumption good 8 4.3

Classroom experiment 18 9.7 Mixed 5 2.7

Online experiment 17 9.2 Health 2 1.1

Game show 3 1.6 Food 1 0.5

Subject population Environment 1 0.5

University population 91 49.2 Continent
General 63 34.1 Europe 78 42.2

Farmer 13 7.0 North America 56 30.3

Mixed 5 2.7 Asia 25 13.5

Children 4 2.2 Africa 8 4.3

Elderly 3 1.6 Oceania 7 3.8

Capuchin monkey 1 0.5 South America 6 3.2

Unknown 5 2.7 Multiple 3 1.6

Notes: In two studies, the geographic location of the data is unknown. These studies were run online

through Amazon’s Mechanical Turk or a mobile app, and the authors did not specify what geographic

controls were used.

In total, the estimates of the loss aversion coefficient comprised in our dataset come from 71

countries/regions (see Figure D.1 in the Online Appendix).

Next we look at the basic design characteristics of the studies. We have 185 “studies”

reported in 150 papers, where a study is defined by a combination of several variables: type

of the data, location of data collection, subject pool, type of reward, and continent of data

collection. The frequency of each design characteristic is shown in Table 1.

The majority of our data comes from laboratory experiments, but we also have studies

using non-experimental data such as surveys, stock market data, and game shows. Subjects

were mostly recruited from the pool of university students or the general population. There is

also a small set of studies which recruited special populations such as financial professionals,

entrepreneurs, managers, and patients with psychiatric disorders or gambling problems. The

type of reward used in the studies is mostly monetary. About three-quarters of the studies

were conducted in Europe or North America.

Next, we look at the main variable of interest, the estimated coefficient of loss aversion.

We have a total of 607 estimates in the dataset (Table 2). About half of these estimate the

degree of loss aversion of a “representative” subject by pooling data from all subjects together

(we call these aggregate-level, or simply aggregate, estimates). The other half estimated the

12



Table 2: Types of estimates.

All estimates With SE

Freq. Prop. Freq. Prop.

Aggregate-level 281 0.463 220 0.530

Individual-level mean 160 0.264 126 0.304

Individual-level median 166 0.273 69 0.166

Total 607 1.000 415 1.000

Notes: There are 85 cases where both mean and median of the distribution of individual-level esti-

mates are reported. “With SE” indicates the observations where SEs are available. In addition, there

are four aggregate-level estimates for which SEs are approximated with reported 𝑝-values, and 64

individual-level medians for which SEs are approximated with IQR. SEs are imputed for the rest of 124

observations (see Section 4.2).

coefficient for each individual subject in the study and reported summary statistics of the

distribution, either mean or median. There are 85 cases where we have both the mean and the

median of the distribution of the loss aversion coefficients estimated at the individual level.

Finally, we look at the specification of the functional form of 𝑈 and the definition of loss

aversion _ (Table 3). There are 302 observations which assume the CRRA form for the utility

functions as in equation (3), following Tversky and Kahneman (1992), but 221 of them assume

and estimate a common curvature for gains and losses (𝛼 = 𝛽). We observe less variation in

the specification of reference points and the definition of loss aversion coefficients. Three-

quarters of the observations set the reference point at zero, but our dataset also includes

studies where reference points are assumed to be subjects’ status quo or expectations. More

than 80% of the observations estimate the loss aversion coefficient _ as Tversky and Kahneman

(1992) define it.

4 Results

We structure the results into three distinct parts. We start from a non-parametric analysis of

the reported loss aversion coefficients and their SEs. We subsequently fit random-effectsmeta-

analytic distributions to the data, and document the estimated mean loss aversion. Finally,

we conduct a series of meta-regressions to see to what extent we can explain the estimated

between-study variance.
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Table 3: Utility function, loss aversion, and reference point.

Freq. % Freq. %

Total number of estimates 522 100.0

Loss aversion _ Functional form of𝑈
Tversky-Kahneman 445 85.2 CRRA 302 57.9

Köbberling-Wakker 37 7.1 CARA 53 10.2

Kőszegi-Rabin 9 1.7 Linear 73 14.0

Other 3 0.6 Other parametric 32 6.1

Not reported 28 5.4 Nonparametric 16 3.1

Reference point Not reported 46 8.8

Zero 394 75.5

Status quo 60 11.5

Expectation 18 3.4

Other / Not reported 50 9.6

Notes: There are 85 cases where both mean and median of the distribution of individual-level estimates

are reported. We keep only one measure from each of these observations. See Online Appendix B for

definitions of loss aversion.
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Figure 3: Distribution of loss aversion parameters. (A) All reported estimates combined. (B) Separated

by the type of estimates. Notes: Panel A is identical to Figure 2. In Panel B, Kernel density estimate

of the distribution of reported _ is plotted, using the Gaussian kernel with the Silverman’s rule of

thumb for the bandwidth selection. All 607 estimates in the data are used for estimation. In the Online

Appendix, Figure D.3 shows density plots of log(_), Figure D.4 shows histograms of _ separated by the

type of estimates, and Figure D.5 shows the empirical CDF of _ for each type of estimates.

4.1 Nonparametric Analysis

We start our presentation of the results by showing some non-parametric patterns in the re-

ported loss aversion coefficient _. Since we do not need SEs for this analysis, we can make use

of all the estimates of loss aversion we coded in the dataset. Figure 3A shows the distribution

of all the coded loss aversion parameters. The mean of the parameters is 1.97. Given the right

skew in the distribution, the median is considerably lower than the mean, at 1.69.
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Table 4: Summary statistics of reported _.

Type 𝑛 Mean SD Q1 Median Q3 Min Max

Aggregate-level 281 1.950 1.681 1.274 1.520 2.180 0.040 23.460

Individual-level mean 160 2.935 2.605 1.618 2.180 3.395 0.110 19.861

Individual-level median 166 1.844 0.756 1.417 1.800 2.090 0.110 7.500

All 522 1.970 1.370 1.310 1.690 2.288 0.040 23.460

Notes: There are 85 cases that report both individual-level mean and median. We keep individual-level

medians from these cases in the last row of the table.

Figure 3B shows the same set of estimates, but now plots separate density functions for the

estimates obtained from aggregate-level means (𝑛 = 281), individual-level means (𝑛 = 160),

andmedians (𝑛 = 166). Aggregate-level estimates can be seen to have the lowestmode (around

1.33), with individual-level medians having a slightly higher mode around 1.88. Means of

individual-level estimates show a fat right tail, indicating a higher frequency of larger values.

Table 4 shows summary statistics of reported _ for each type of measurement. The means of

aggregate-level estimates and individual-level medians are close together, at 1.95 and 1.84, re-

spectively. The somewhat lower mean of the latter results from fewer very large observations

amongst medians than amongst aggregate estimates. The individual-level means have the

largest variation (SD = 2.61 versus 1.68 for aggregate means and 0.76 for individual-level me-

dians), including some of the smallest estimates as well as some of the largest. The truncated

nature of the distribution then results in the highest mean by far, 2.94.

The differences betweenmeasurement types above cannot be interpreted causally. That is,

the different measurements generally derive from different studies and are based on different

data, so that the observed differences cannot be directly ascribed to the type of measurement

used. To gain insight into the effect of measurement type, we can conduct an analysis based

on the 85 studies for which both means and medians are reported. With a mean of the means

of 3.47 (median ofmeans, 2.08) and amean of themedians of 1.71 (median ofmedians, 1.69), the

results confirm the ones for the overall sample (see Figure D.6 in the Online Appendix). That

is, the individual-level estimates tend to be rightward skewed, and this strongly affects the

aggregate estimate reported in a paper when means of the individual-level estimates are used

instead of medians. This issue, however, will be at least partly remedied by the observation

that means of individual-level estimates also tend to come with increased SEs, which will in

turn lead to increased pooling of the larger estimates in our meta-analytic estimations.

The earliest evidence recorded in our dataset is Tversky and Kahneman’s (1992) famous

2.25. See Figure D.2 in the Online Appendix for the time trend of reported estimates. Half of

the estimates in the data are found in papers published after 2015. Individual-level estimates

appear in the dataset after 2006, in part due to the rise of common experimental elicitation
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Figure 4: Relationship between reported _ and associated SE. Estimates with corresponding SEs re-

ported are included (𝑛 = 419). Notes: For observations which have both individual-level mean and

median, we keep the median in this figure. The vertical solid line corresponds to loss neutrality _ = 1.

Two dashed curves represent the boundaries for statistically-significant loss aversion (_ > 1) and loss

tolerance (_ < 1). The 𝑥-axis is cut off at 6 and the 𝑦-axis is displayed in the log-scale for better visu-

alization.

procedures. The raw data do not reveal a clear time trend, suggesting that estimates have

remained the same on average for the last 30 years.

Just looking at the raw reported _, Figure 3 and Table 4 suggest that the “average” loss

aversion coefficient _ would locate somewhere between 1.8 and 2.9. At the same time, there

is high dispersion in the reported _. These rough initial estimates, however, do not take the

quality of the estimate into account. The latter can be assessed by means of the standard error

associated to each estimate, which we can use to calculate a proper “meta-analytic average”

by weighing each estimate by its precision, i.e., the inverse of its standard error. Estimates

falling far from the mean will then be given less weight to the extent that they have large

associated standard errors.

4.2 Precision of Estimates

A common tool of meta-analysis is the so-called “funnel plot” which visualizes the relation-

ship between reported estimates and their associated SEs (Stanley and Doucouliagos, 2012).

Figure 4 illustrates this relationship using data points where we have both a value for _ and an

associated SE (either reported in the paper or re-constructed from other available information

by us).

Figure 4 tells us several things about empirical estimates of loss aversion. Loss aversion

may be imprecisely estimated, for instance, because of a small sample size, or because of other

characteristics of the design. In our data, estimates that are far from 1 have higher SEs. They
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are not precisely estimated coefficients due to, for example, small sample size or other issues

with the design or behavior. More precisely estimated _’s tend to cluster between 1 and 2.

Second, 398 out of 419 estimates (95%) are larger than 1, producing a massive asymmetry in

the funnel plot. Third, about 76.6% (305 out of 398) of _ ≥ 1 estimates report results that are

significantly different from 1 (based on the two-sided Wald test with the usual significance

threshold of 𝑝 < 0.05).

Table 2 above shows that 192 out of our 607 recorded estimates are missing SEs. We

approximate SEs from IQRs and 𝑝-values for 68 of these observations (see footnote 8), which

leave 124 SEs missing. Since standard errors are a fundamental ingredient for meta-analysis

because they provide weights for the observations, we thus risk losing many observations,

including the iconic measure of 2.25 reported by Tversky and Kahneman (1992). If studies not

reporting any SEs are different from studies reporting them, we may furthermore distort our

estimates systematically.

To overcome this issue, we impute the missing SEs using the subset of the data for which

we have both _ and its associated SE. The basic idea is to estimate the parameters charac-

terizing the distribution of SEs in the data, assuming that log(se) is drawn from a normal

distribution N(`se, 𝜎2

se) and that the mean depends on the size of reported _, `se = 𝛼se + 𝛽se_.

We then impute missing SEs using the estimated distributional parameters (𝛼se, 𝛽se, 𝜎se) and
reported _. See Online Appendix A.3 for the detail. Online Appendix C.3.2 also shows that

our estimates and conclusions of this paper would not particularly change if these imputed

values were dropped. We will, from now on, make use of the full set of observations.

4.3 Average Loss Aversion in the Literature

The main goal of our meta-analysis is first to obtain the “best available” estimate of the loss

aversion coefficient _ combining the available information in the literature and then to un-

derstand the heterogeneity of reported estimates across studies. Both goals can be informed

by the data using a Bayesian hierarchical modeling approach.

Setup. Consider the dataset (_𝑖, se𝑖)𝑚𝑖=1, where _𝑖 is the 𝑖th measurement (or observation) of
the loss aversion coefficient in the dataset and se𝑖 is the associated standard error that captures
the uncertainty surrounding the estimate. In the benchmark model, we assume that the 𝑖th

reported estimate _𝑖 is normally distributed around the parameter _𝑖 :

_𝑖 | _𝑖, se𝑖 ∼ N(_𝑖, se2𝑖 ), (4)

where the variability is due to the sampling variation captured by the known standard error

se𝑖 . The parameter _𝑖 is often referred to as the “true effect size” in meta-analysis.
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Sampling variation is part of the observed variation in the reported estimates (_𝑖)𝑚𝑖=1, but
in addition, there may be “genuine” heterogeneity across measurements (due to different set-

tings, for example). We model this by assuming that each _𝑖 is in turn normally distributed,

adding another level to the hierarchy:

_𝑖 | _0, 𝜏 ∼ N(_0, 𝜏2), (5)

where _0 is the overall mean of the estimated loss aversion parameters _𝑖 , and 𝜏 is its standard

deviation, capturing the variation between observations in the data. The overall variance

in the data, therefore, consists of two parts, the between-observation variance, 𝜏2, and the

individual sampling variation coming from measurement uncertainty, se. This can be clearly

seen by combining expressions (4) and (5) into one:

_𝑖 | _0, 𝜏, se𝑖 ∼ N(_0, 𝜏2 + se2𝑖 ).

Model estimation. We start from fitting the model expressed as equations (4) and (5), re-

stated as model M1 here, to the data (_𝑖, se𝑖)𝑚𝑖=1:

_𝑖 | _𝑖, se𝑖 ∼ N(_𝑖, se2𝑖 ),
_𝑖 | _0, 𝜏 ∼ N(_0, 𝜏2),

_0 ∼ half N(1, 5),
𝜏 ∼ half N(0, 5),

(M1)

where “half N” indicates the half-normal distribution which “folds” the normal distribution

N(0, 𝜎2) at its mean to have nonzero probability density for values greater than or equal to 0.

This model incorporates the assumption that every observation is statistically independent,

and that the observations are normally distributed. We will relax these rather strong assump-

tions in due time.

We estimate the model in Stan (Carpenter et al., 2017) using Hamiltonian Monte Carlo

simulations, and launch it from R (R Core Team, 2020) using RStan (Stan Development Team,

2020). We chose half-normal distributions with a standard deviation of 5 for priors for the

population-level parameters _0 and 𝜏 , but the estimates are not sensitive to changing the

prior, given the amount of data we have (see Online Appendix C.3.3).

The estimated overall mean _0 is 1.809with a 95% credible interval (CrI) of [1.740, 1.878].10,11

10
A Bayesian credible interval (CrI) of size 1−𝛼 given data 𝐷 is an interval [𝐿(𝐷),𝑈 (𝐷)] such that 𝑃 (𝐿(𝐷) ≤

\ ≤ 𝑈 (𝐷)) = 1 − 𝛼 , where \ is the parameter of interest. Unlike the (frequentist) confidence interval, CrI has a

literal probabilistic interpretation: given the data, there is a 100 × (1 − 𝛼)% probability that the true parameter

value is in the interval.

11
Results from the frequentist random-effects meta-analysis are presented in Online Appendix E. We obtain
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Figure 5: (A) Density plot of loss aversion coefficient, estimated _𝑖 versus reported _𝑖 . (B) Posterior

draws of the overall mean _0. (C) Posterior draws of the heterogeneity parameter 𝜏 . Notes: The dashed
curve in panel A indicates the density of the observed loss aversion parameters, _𝑖 ; the solid curve in

panel A indicates the density of the estimated parameters, _𝑖 . Observations above six are not shown

in panel A for better visualization. The black dots and lines in panels B and C represent the posterior

means and the 95% credible intervals of _0 and 𝜏 , respectively.

The mean is clearly lower than the non-parametric result that we saw above, which was 1.97.

This is shown in Figure 5AB. The density of estimated _𝑖 is lower than the one of observed

_𝑖 for values above 2.5. The same occurs for values below one. This is meta-analytic pool-

ing at work—estimates that fall far from the mean are shrunk towards more plausible values,

with the amount of shrinkage proportional to the standard error. See discussion in Online

Appendix C.2.

The estimates produced are of course only valid conditional on our assumptions. We al-

ready know that the normality assumption seems a stretch, given the skewed distribution

of the reported _. To see this, we can take a look at the posterior predictive distribution—the
distribution of loss aversion coefficients we would expect new observations _new to display,

provided that the characteristics of the studies from which these observations are obtained

are similar on average to those of past studies—and compare it to the distribution of actual

observations.
12

This is shown in Figure 6A. Relatively to the actual observations—either as

reported (_𝑖 ), or as estimated (_𝑖 )—the posterior predictive distribution overestimates the like-

lihood of values smaller than 1, while it underestimates the likelihood of intermediate values

between 1 and 2. It does not attribute any probability to values beyond 4, which are not un-

largely identical estimates.

12
Formally, the posterior predictive distribution is written:

𝜋
(
_new | (_𝑖 )𝑚𝑖=1

)
=

∫
𝜋 (_new | \ ) 𝜋

(
\ | (_𝑖 )𝑚𝑖=1

)
𝑑\,

where \ = ((_𝑖 )𝑚𝑖=1, _0, 𝜏) is a vector of model parameters (Gelman et al., 2014). Evaluating this integral is difficult,

but we approximate it by drawing _
(𝑠)
new

∼ N(_ (𝑠)
0
, 𝜏2(𝑠) ) using posterior simulations (_ (𝑠)

0
, 𝜏 (𝑠) ), 𝑠 = 1, . . . , 𝑁 . We

have 8,000 draws (2,000 iterations × 4 chains) of _new.
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Figure 6: Distributions of reported and estimated _, and posterior predictive distribution of _. (A)

Assuming a normal distribution for the population level (model M1). (B) Assuming a log-normal dis-

tribution for the population level (model M2).

common in the data. It thus seems desirable to look for a model that may provide a better fit

to the data.

We thus extend the baseline model M1 in twoways. First, we use a log-normal distribution

for the population-level distribution. Second, we explicitly model the nesting of observations

in papers, in order to overcome any potential distortions deriving from non-independence

of observations. Remember that our 607 observations have been obtained from 150 distinct

papers, the largest number of observations in a single paper being 53 (Rieger, Wang and Hens,

2017; Wang, Rieger and Hens, 2017). The independence assumption seems rather heroic in

this case. To do this, we introduce paper-level estimates as an additional hierarchical level.

Let _𝑝𝑖 be the 𝑖th estimate reported in paper 𝑝 . We formulate a model as follows:

_𝑝𝑖 | _𝑝𝑖, se𝑝𝑖 ∼ N(_𝑝𝑖, se2𝑝𝑖),
_𝑝𝑖 | df , _𝑝, 𝜎𝑝 ∼ 𝑡 (df , _𝑝, 𝜎2

𝑝),
_𝑝 | _ℓ

0
, 𝜏ℓ ∼ logN(_ℓ

0
, 𝜏2ℓ ),

_ℓ
0
∼ N(1, 5),

𝜏ℓ ∼ half N(0, 5),
df ∼ half N(0, 5),
𝜎𝑝 ∼ half N(0, 5).

(M2)

The model M2 now explicitly models the nesting of the estimated observation-level pa-

rameters, _𝑝𝑖 , in paper-level estimates, _𝑝 . The former are modeled as following a robust

student-𝑡 distribution instead of a normal distribution to account for observed outliers.
13

The

13
We estimate the degrees of freedom of the distribution, df , endogenously from the data. This allows us to

determine whether the student-𝑡 distribution provides a good fit, which is the case if the degrees of freedom are

small, or whether it converges to a normal distribution, which is the case for large degrees of freedom (Kruschke,
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Table 5: Summary of estimation results.

Distributional assumption Posterior of _0 Posterior of 𝜏

Model Obs. level Paper level Pop. level Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

M1 Normal Normal 1.809 0.036 1.740 1.878 0.747 0.027 0.694 0.802

M2 Normal Student-𝑡 Log-normal 1.955 0.073 1.820 2.105 0.744 0.344 0.603 0.913

Notes: InModelM2, (_0, 𝜏) are calculated from the log-normal parameters (_ℓ
0
, 𝜏ℓ ) by _0 = exp(_ℓ

0
+𝜏2ℓ /2)

and 𝜏2 = [exp(𝜏2ℓ ) − 1] exp(2_ℓ
0
+ 𝜏2ℓ ).

latter are modeled as following a log-normal distribution. Note the super-/sub-scripts ℓ in

the location and scale parameters (_ℓ
0
, 𝜏2ℓ ) of the log-normal distribution. We can calculate the

mean and themedian of the distribution by exp(_ℓ
0
+𝜏2ℓ /2) and exp(_ℓ0), respectively, exploiting

the properties of the log-normal distribution.

We again start by examining the fit of the model to the data, and by summarizing the

population-level parameters. Themodel fit is shown in Figure 6B. The log-normal distribution

can now be seen to fit the estimated paper-level data well. The distribution of the paper-level

observations has more probability mass between about 1 and 3, but less beyond that point,

compared to the actual study-level observations. The degrees of freedom of the student-𝑡

distribution are estimated at 1.32, thus vindicating the use of the robust distribution. Themean

loss aversion parameter obtained from this estimation is 1.955, with a 95% CrI of [1.820, 2.105].
Notice, however, that even though this estimate is nearly identical to the one obtained under

the standard model at the outset, that occurs by coincidence rather than being a feature of the

model. One can further see that there is now increased uncertainty surrounding the prediction

interval. This is indeed natural, since the paper-level estimates are surrounded themselves

by larger amounts of uncertainty, which is then passed up the hierarchy to the aggregate

parameters.

Robustness checks. Online Appendix C.2 presents estimation results for two additional

models, but our preferred model M2 fits better than these “intermediate” models. We also es-

timated themodels under different priors or using the “complete” data including only observa-

tions where associated SEs are available, and obtained similar conclusions. These robustness

checks are presented in Online Appendix C.3.

Heterogeneity between studies versus between individuals. An interesting question

concerns how the heterogeneity between studies we document compares to typical levels

of heterogeneity between individuals. While our data are ill-suited to answer this question

in general, Figure 7 provides an indication by comparing the study-level estimates of loss

2010).
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Figure 7: Distributions of estimated _𝑝𝑖 , compared to individual-level estimates from l’Haridon and

Vieider (2019). Estimates from l’Haridon and Vieider (2019) follow the original hierarchical setup with

country-level fixed effects reported in that paper.

aversion obtained from model M2, _𝑝𝑖 , to the between-subject distribution of loss aversion

in the data of l’Haridon and Vieider (2019), containing estimates for 3,000 students from 30

countries. Both distributions display a log-normal shape, and have peaks in their densities

between 1 and 2. The individual-level estimates are somewhat more dispersed, having slightly

more probability mass on small values below 1, as well as more probability mass on values

above 2.5. Overall, however, the two distributions are similar. This illustrates just how much

heterogeneity we find between studies, which may arguably be driven at least in part by

differences in experimental designs, model definitions, and estimation methods.
14

The comparison shown here comes with a large caveat—individual-level distributions

from other papers may look very different. This also goes back to the point on study quality

wemade above. Given suitable restrictions on choice lists andmodeling assumptions, it would

be easy to produce individual-level distributions that are narrower than the one shown here.

On the other hand, wide choice lists, general definitions, and noisiness in measurements can

all contribute to much wider distributions. It can indeed be shown that, given a wide enough

range of possible estimates, the location parameter of the log-normal posterior predictive dis-

tribution fit to the individual-level estimates will decrease systematically as the proportion of

14
We note one finding which shows strong between-subject heterogeneity and its association with IQ. Chap-

man et al. (2018) report data from an incentivized representative survey of Americans measuring loss aversion

and other behavioral parameters. In the representative survey, the median _ is 0.99. In a college sample using

a highly similar protocol, the median _ is 1.84. In the survey of Americans there are substantial correlations

(around 0.2-0.3) between IQ and loss aversion. This paper is not included in our meta-analysis because it fell

outside our time window. However, it uses both a different design (optimized adaptive estimation) and features

several important within-study measures of heterogeneity, especially IQ. Since this is the only study to report

cross-IQ heterogeneity, meta-regression of that feature will add little to general conclusions. Such a study could

therefore feature prominently in a narrative review (for reasons discussed in our conclusion).
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random choices increases, while the dispersion will increase in random choices.
15
This goes to

show just how many different factors may impact the estimation of loss aversion coefficients.

4.4 Explaining Heterogeneity

We observe a non-negligible amount of between-paper heterogeneity (expressed in estimated

𝜏 in Table 5, model M2) among reported estimates of _. In this section, we seek to understand

the source of this variability in order to provide a tentative answer to our second key ques-

tion: “Do reported estimates of _ systematically vary by underlying design characteristics for

measurement of loss aversion?”

Remember that we coded several features about the characteristics of study design (Ta-

ble A.1 in the Online Appendix). Figures D.10 and D.11 in the Online Appendix provide a

first look into how these design features are related to reported estimates of _. Each panel

presents how the reported _ varies by underlying design characteristics. We do observe some

patterns in the figure, but the effects appear rather weak and it is not clear if these relations

are systematic and robust.

We approach this question with a random-effects meta-regression, which extends our pre-

vious random-effects model by incorporating coded features of the observation or the paper

into the model. More precisely, we set up a new model, which expands model M2 by allow-

ing for the location of the observations to be systematically shifted depending on observed

characteristics of the observation or the paper. The model looks as follows:

_𝑝𝑖 | _𝑝𝑖, se𝑝𝑖 ∼ N(_𝑝𝑖, se2𝑝𝑖),
_𝑝𝑖 | df , _𝑝, 𝜎𝑝, 𝛽 ∼ 𝑡 (df , _𝑝 + 𝑋𝑝𝑖𝛽, 𝜎

2

𝑝),
_𝑝 | _ℓ

0
, 𝜏ℓ ∼ logN(_ℓ

0
, 𝜏2ℓ ),

_ℓ
0
∼ N(1, 5),

𝜏ℓ ∼ half N(0, 5),
df ∼ half N(0, 5),
𝜎𝑝 ∼ half N(0, 5),

where 𝑋𝑝𝑖 is a vector of study characteristics associated with 𝑖th observation reported in pa-

per 𝑝 . These characteristics consist mostly of dummy variables taking the value of 0 or 1, with

𝛽 a vector of coefficients. To facilitate the interpretation of the constant, non-dummy inde-

pendent variables included in vector 𝑋𝑝𝑖 are mean-centered—each coefficient in the vector 𝛽

15
Note that the range one can theoretically estimate will depend both on the measurement obtained and the

definition of loss aversion. For instance, a narrow choice list in the mixed domain (𝑥 > 0 > 𝑦) may come up with

a narrow range of estimations if the definition of loss aversion is taken to be _ = 𝑥/(−𝑦). For a definition _ =

𝑈 (𝑥)/(−𝑈 (𝑦)), however, the range resulting from that same choice list could be very wide if the measurements

of𝑈 allow for extreme values.
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then captures the additive effect on the paper-level mean _𝑝 , relative to the “baseline study”

(characterized by the omitted categories in dummy variables and the means of non-dummy

variables) which will become clear later.

Estimation results are presented in Figure 8. First, the posterior mean of the estimated _𝑝∗

for the benchmark study 𝑝∗ is 1.984 (95% CrI = [1.593, 2.385]). Each estimated coefficient in

𝛽 captures the effect of the study characteristic from this benchmark value.

As we have seen above in Section 4.1, the type of estimates reliably captures the variation

in reported _— individual-level means tend to be higher than the other two types of estimates,

due to skewed distributions of individually-estimated _. We also find that field experiments

are associated with higher _ compared to laboratory experiments and studies recruiting gen-

eral population samples are also associated with higher values of _ compared to the studies

with a population of university students. We do not observe differences between studies us-

ing monetary rewards and non-monetary rewards, but survey studies tend to produce lower

estimates of _ than the binary lottery choice tasks which are common in laboratory experi-

ments. In terms of the specification of the value function, it does not seem to matter much

which functional form (CRRA, CARA, etc.) one assumes for the utility functions𝑈 , or whether

reference points are assumed to be zero, status quo, or expectations. Studies estimating _ fol-

lowing the definition by Köbberling and Wakker (2005) produce higher _ compared to the

standard Tversky and Kahneman’s (1992) definition, but the effect is modest.
16

Taken together, our Bayesian meta-regression analysis uncovers some factors that are

associated with the size of reported loss aversion coefficients, but it is still a difficult task to

draw a complete picture of the observed heterogeneity. We note that 15.5% of the between-

observation variance is explained by covariates.

4.5 Publication Bias

The cumulation of scientific knowledge is threatened by selective reporting or publication of

findings. For example, suppose a theory or body of evidence makes a strong prediction about

the sign or magnitude of a certain effect. Selective reporting occurs if scientists, editors and

reviewers believe effects to be the norm, and there is a bias against reporting or publishing

“unusual” results which contradict the norm. Selective reporting of this kind slows down the

crucial process of scientific self-correction.

We will refer to such selective reporting of scientific findings collectively as “publication

16
We have 10 estimates of _ reported in eight papers that use the definition of loss aversion according to

Kőszegi and Rabin (2006, KR). Since the KR formulation incorporates consumption utility (as we discuss in

Section 2), caution is needed when comparing estimates of _ using the KR formulation and other estimates of _

following the standard Tversky and Kahneman’s (1992) definition. DellaVigna (2018), for example, suggests that

a loss aversion of 2.25 in Tversky and Kahneman (1992) translates into a loss aversion of 3.35 in KR (footnote 16,

p. 674).
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Figure 8: Bayesian random-effects meta-regression. Posterior distributions of coefficients 𝛽 , together

with posterior medians (black dot), 66% (thick solid line) and 95% (thin solid line) credible intervals,

are shown. Table D.1 in the Online Appendix presents the result in a table format.
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Figure 9: Funnel plot. Notes: The vertical dashed line corresponds to no loss aversion _ = 1. The

vertical solid line corresponds to the estimated mean _0 from model M2, 1.955. The vertical dash-

dotted line corresponds to the bias-corrected mean _ from model M1-ext, 1.742. The 𝑥-axis is cut off

at 6 and the 𝑦-axis is displayed in the logarithmic scale for better visualization.

bias.” Publication bias can take on many forms. We discuss two possibilities of relevance for

the case of loss aversion. The first case is when journals prefer to see numerical estimates of

loss aversion close to a certain number, and are skeptical of estimates that deviate far from

that number. For there to be a bias, the preferred estimate by journal editors must differ from

the “true” estimate found in the population of studies (see Borenstein et al., 2009).

A second form of bias concerns the overall significance of results. In this form, journals

prefer results that are “statistically significant” (usually demarcated by a 𝑝-value of 0.05) and

reject some null hypothesis (Andrews and Kasy, 2019; Brodeur et al., 2016; Brodeur, Cook

and Heyes, 2020; Chopra et al., 2022). From the viewpoint of the authors of this paper, there

is not a single specific test that can address these forms of publication bias jointly. Even if

there were, the particular issues with this data might make it difficult to trust a single test

absolutely. Instead we will take a descriptive approach to both types of publication bias.

Regarding the first form, in the context of loss aversion, onemight suspect that researchers

preferentially report evidence for loss aversion (_ > 1) and put evidence for loss tolerance

(_ < 1) “in the file drawer” because such results contradict the initial hypothesis (Rosenthal,

1979). Other sources of publication bias are possible. Researchers in some disciplines may be

motivated to undermine the “prevailing paradigm” of loss aversion and preferentially create

or publish low-_ results. Alternatively, some journals may be interested in publishing results

that conform to the pre-prospect theory economic orthodoxy of no loss aversion. Even coming

up with a null hypothesis is thus more complex in our case than it would be when trying to

simply ascertain the effect of a treatment or its absence.

Funnel plots (see Section 4.2) are often used as a tool to examine bias from the results of
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meta-analyses (Egger et al., 1997; Stanley and Doucouliagos, 2010). Figure 9 shows such a

plot for all data points for which we have both an estimate of loss aversion and an associated

standard error (thus excluding estimates with imputed SEs). In the absence of publication

bias, the observations at the bottom of the graph, which have higher precision, should be be

concentrated around the underlying mean estimate, indicated by the solid vertical line. As we

move up in the graph toward the top of the funnel, and the precision of the studies decreases,

we expect an increase in the degree of dispersion around the mean estimate. In the absence of

publication bias, this dispersion ought to be symmetric around the mean. A larger number of

observations in the upper right side of the graph compared to the upper left side would then

be an indicator of classical publication bias, whereby estimates of loss aversion that fall closer

to 1 and are not significant are less likely to be reported.

At first sight, there would indeed appear to be such an asymmetry in the graph. We

clearly observe some large estimates in the upper right part of the graph, and hardly any

corresponding estimates in the upper left part. Even more pronounced is the large cluster of

studies at the bottom left corner of the graph. One might be concerned they indicate a model

of publication bias where the true _ is around 0.8–1 but editorial bias favors publication of

studieswith higher estimates at lower precision. (In such amodel, low-precision, low-estimate

studies would not be published because of the judgment of journal referees or editors, and

high-precision, high-estimate studies would not be published because they are statistically

improbable.)

To test asymmetry in the funnel plot through examining correlation between reported

estimates and their SEs, we extend the benchmark model M1 by allowing the underlying

mean for each reported estimate to depend systematically on the standard error:

_𝑖 | _0, 𝛾, 𝜏, se𝑖 ∼ N
(
_0 + 𝛾

√︃
𝜏2 + se2

𝑖
, 𝜏2 + se2𝑖

)
, (M1-ext)

where 𝛾 represents a potential publication bias and _0 +𝛾𝜏 captures the average loss aversion
coefficient correcting for the bias (since E[_𝑖] → _0 + 𝛾𝜏 as precision goes to infinity, or

equivalently, se𝑖 → 0).
17

We find that the estimated mean 𝛾 is positive (i.e., 1.434 with a

95% CrI of [1.008, 1.876]), consistent with publication bias of a specific form: higher _ are

less-precisely estimated and “small” _ are hidden in the literature. The “corrected” mean _ is

the mean _0 + 𝛾𝜏 which is 1.742 with a 95% CrI of [1.674, 1.811]. Thus, the model suggests a

relatively milder publication bias than Figure 9 might suggest, but nonetheless a drop from

the average _ of our main estimate of 1.955 (model M2, Table 5).

17
This model is motivated by the regression-based approach for detecting and correcting for publication bias

inmeta-analysis, introduced first by Egger et al. (1997) and established by Card and Krueger (1995), Stanley (2005,

2008), and Stanley and Doucouliagos (2014). Here we follow the “extended random-effects model” developed by

Rücker et al. (2011), to be consistent with the hierarchical model we set up in Section 4.3.
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The use and appropriate interpretation of funnel plot asymmetry has been debated, and

there are reasons to not take this estimate at face value. A crucial assumption in measuring

publication bias using these tests is that there is no correlation between estimates and their

standard errors (in the absence of publication bias and between-study heterogeneity). In the

context of estimation of behavioral parameters in experimental economics like ours, there

are plausible reasons why the no-correlation assumption might fail. First, it is possible that

researchers choose parameters in their experiments (such as a series of monetary outcomes

used in a Multiple Price List) in a way that is tuned to detect loss aversion coefficient that are

close to 1 or 2. Second, the parameter _must be larger than 0 by construction of the theory, and

the reported estimates exhibit non-normality. In each of these cases, the correlation between

estimates and standard errors can arise “mechanically” even without any publication bias.
18

A different way to examine a certain type of publication bias is to compare values reported

in published and unpublished papers. This method does not rely on assumed independence

between estimates and their standard errors. Publication bias by journals implies that the es-

timates found in published papers could vary from estimates in unpublished working papers.

Our meta-regressions (presented in Section 4.4) estimated that observed loss aversion coeffi-

cients were 0.25 lower in working papers than in published studies, roughly 1.73 for working

papers (though the two credible intervals are overlapping). Remember that the “true” value of

lambda is best estimated by a weighted average of the working paper estimate and the pub-

lished paper estimate, so 1.73 can still be thought of as a lower bound of the “true” estimate. It

is perhaps reassuring that his value is almost the same as the bias-corrected estimate of 1.74

discussed above.

A second form of publication bias involves a journal focusing too much on “statistically

significant” results. In this form, journals prefer to publish results that reject the null hy-

pothesis for the parameter of loss aversion, such as _ = 1 or _ = 2, which could result in

a distribution of test statistics that exhibits a discontinuity around a threshold for statistical

significance (such as 𝑧 = 1.96). Gerber and Malhotra (2008a,b) introduced a “caliper test”

to identify a systematic bunching in the distribution of test statistics within narrow bands

around threshold of statistical significance, but such an approach requires more observations

than we have in our sample. Absent the ability to perform that test, we provide histograms of

the 𝑧-statistics of our estimates in Figure 10. There are two histograms, centered around the

null hypotheses of _ = 1 (panel A) and _ = 2 (panel B). The figure does not appear to reveal

any such spikes in the positive or negative direction around values of 1 or 2 (which would

appear around the vertical dotted line representing zero deviation), regardless of which null

18
A similar point was raised by Matoušek, Havránek and Iršová (2022), who did a meta-analysis of experi-

mentally measured individual discount rates which are typically bounded at zero. See also Sterne et al. (2011)

for more general discussion and recommendations for interpretation of funnel plot asymmetry in the context of

meta-analyses in RCTs.
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Figure 10: The left panels (AC) show binned density plots for the 𝑧-statistics and the right panels

(BD) plot the estimated “effect size” against its standard error. In panels AB, the effect size is _ − 1,

corresponding to the null hypothesis of 𝐻0 : _ = 1. In panels CD, the effect size is _ − 2, corresponding

to the null hypothesis of 𝐻0 : _ = 2. Notes: The plots include 346 observations of aggregate-level and
individual-level mean _, which have associated standard errors reported in the paper. The solid red

lines mark |𝑧 | = 1.96. Blue bars and dots correspond to effect sizes that are significantly different from

zero at the 5% level. The bin width is 0.32 in panels AC. Outliers are not shown in the plots: the 𝑥-axis

is restricted to the interval [Q1 − 1.5 × IQR,Q3 + 1.5 × IQR] in panels AC and both axes are cut off at

Q3 + 3 × IQR in panels BD. Figure D.8 in the Online Appendix shows the “full” version of panels BD,

including outliers.

hypothesis we consider.

5 Discussion

Loss aversion is an important concept in behavioral economics and has been applied widely.

This paper reports ameta-analysis of empirical estimates of the loss aversion coefficient _. Our

preferred specification indicates a mean _ = 1.955 and a 95% credible interval of [1.820, 2.105].
Many other specifications are within 0.1–0.3 of this finding and produce credible intervals that

do not include 1 or 2.25. The former number is consistent with no loss aversion; the latter

is an early estimate from Tversky and Kahneman (1992) which seems a bit too high. While

there is a wide degree of heterogeneity across estimates, in general, no single factor emerges
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from meta-regression that greatly changes estimated loss aversion. Estimates derived from

non-university populations, field experiments, and means of individual elicitations (compared

to aggregates) are correlated with a modest increase in the loss aversion parameter.

A main takeaway from this paper is that the point estimate of _ = 1.955 reported above—

estimated jointly with the uncertainty surrounding it—is the best current answer to the ques-

tion of how large the loss aversion coefficient truly is. It is not the ultimate answer, however.

One can indeed easily update this information with new evidence, either by using this as a

Bayesian (hyper-)prior in subsequent estimations of loss aversion, or by combining the pos-

terior from our meta-analysis with equivalent evidence from a follow-up meta-analysis on

studies not yet included into our sample, e.g., because they appeared after our cut-off date.

We note two possible limitations to our study and, wherever possible, note where suc-

cessive studies could improve. First, a key concern with any empirical analysis is differential

selection of reported data. The outlined criteria for inclusion in our dataset are explicit and

objective; we have no reason to believe, ex-ante, it should be correlated with our parameter

of interest. However, our dataset is dominated by published studies. To the extent that pub-

lication may vary with a reported _ parameter, our analysis may suffer from bias.
19

Because

the parameter of interest here is bounded by zero and positively skewed, it is difficult to use

standard meta-analysis techniques like funnel plot (see Figure 9) and regressions to measure

publication bias. Further, an important test of publication bias is whether unpublished work-

ing papers report reliably different results than published ones. There appears to be a modest

difference; unpublished papers are about 0.25 lower which, notably, is still within the credible

interval of our current estimate, and may be due to chance given the small sample. While our

preferred estimate is _ = 1.955, based on the assumption that available studies are unbiased,

researchers more concerned about publication bias may want to consider lower values (e.g.,

_ = 1.73-1.74).

Second, while we followed conventional practices of coding study quality (see Section 3.2),

medical and health meta-analyses follow a more formal method to assess study quality as

“risk of bias.” Tens of thousands of Cochrane meta-analyses and systematic reviews follow

a standard protocol where multiple raters evaluate risks of bias (study quality) on multiple

dimensions such as the randomness of the treatment assignment and the blinding of partici-

pants and researchers, among others.
20

For instance, Hollands et al. (2015) is a meta-analysis

19
It is important to note that any research synthesis technique would suffer from this issue, not just meta-

analysis (Borenstein et al., 2009).

20
Risk of Bias, introduced in 2008, is a tool widely used in Cochrane reviews and other systematic reviews for

assessing risk of bias in randomized trials (Higgins et al., 2011). Their general criteria are: Randomness, blinding

of participants and personnel (to treatment), blinding of outcome assessment, incomplete outcomes (attrition),

selective reporting, comparability of groups (a.k.a. balance check), and consistency of intervention delivery. In

each of these categories there are a small number of precise questions which are subjectively rated by assessors

30



of experiments testing the causal effect of changing portion, package, or tableware size on

how much food, alcohol, or tobacco is chosen or actually consumed. Their Figure 3 shows

that of their 72 studies assessed about one-third were Low Risk, the modal percentage were

Unclear Risk, and less than 10% were deemed High Risk.
21

Meta-regression analysis is uniquely able to adjust for unobserved differences in research

quality across studies. If every study in our dataset contained multiple estimates, a fixed-

effect panel meta-regression would have eliminated any potential distortion that differences

is study quality may have on research findings (Stanley and Doucouliagos, 2012, pp. 112-117).

Outside of this special case, the meta-regression can only control for effects and is dependent

on how the values of quality are coded. Accordingly, we have recorded for each estimate the

impact factor of the journal in which they were published (if applicable). The impact factor

value has little explanatory power in regards to our results. We note (1) there is no meaning-

ful correlation between journal impact factor and reported (mean) _ value; (2) inclusion or

exclusion of journal impact factor does not meaningfully change our meta-regression results.

To the extent journal impact factor can be a proxy for study quality, we see no evidence to

support the concern that “low” quality studies are biasing our results.

In the introductionwe promised to return to subtle, important comparisons betweenmeta-

analysis and narrative review. We will do that now.

Many readers will not know much about meta-analysis and might be skeptical about it,

especially in comparison to the familiar style we call “narrative review.” We anticipate such

skepticism and offer counter-arguments. The unabashed goal is to advocate for more appre-

ciation of the underdog method of meta-analysis.

Wewill start with fears about narrative review. Such reviews could be influenced by biases

in remembering recent (and perhaps socially-connected) salient, recently-encountered data.

Meta-analysis is a partial antidote.

There are two natural fears about meta-analysis. One is that it is somehow a mistake to

reduce all research in a field to a single value or a range of numbers. The second fear is that

simple apples-to-apples comparisons across studies neglects heterogeneity of methods (see

Borenstein et al., 2009, for a history of such critiques). These fears are natural, but meta-

analysis techniques have evolved to allay such fears.

The “single number” fear is misguided because humans—including scientists—value sim-

on a four-point categorical scale (Yes, Probably Yes, Probably No, No) then aggregated. See Sterne et al. (2019)

for a revised tool (RoB 2).

21
A possible analogue exists within social science research (especially for experiments), forecasts of the likely

replicability of a study’s findings. Altmejd et al. (2019) use data from actual replications to fit a machine learning

model. They are able to predict the degree of replicability with about 75% accuracy from simple observable

features of a study.
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plicity. If meta-analysis did not provide a carefully and transparently derived value (or range),

researchers will imagine another simplified value, one way or another. It is also often neces-

sary to choose some value as an input into structural models within economics, and to make

power calculations during pre-registration. Furthermore, the purpose of this or any meta-

analysis is not to simply provide one number, but to demonstrate how such numbers vary

given other factors that categorize studies, using meta-regression techniques (e.g., Figure 8).

Stanley and Doucouliagos (2012) remind us that meta-regressions simply take a well-known

and established technique to understand variation in many kinds of economic data, and just

apply it to the data our own profession generates.

Next we turn to a sharper comparison between meta-analysis and narrative review. In

a narrative review, there is no explicit attempt to canvas all studies based on stated criteria.

Instead, an expert reviewer chooses studies that seem to be of especially high quality or pivot

the scientific trajectory in a useful new direction. It is similar to an historical analysis of

progress in a field. To relate the two methods, a narrative review is simply a meta-analysis

with an altered subjective weighting system. The subjective weights are judgments by the

reviewer of what findings readers should care the most about, and the reasons why.

One analogy is to sports commentary. Meta-analysis is like a “play-by-play” analyst who

describes every action on the field with an even tone. Narrative review is like a “color analyst”

who picks out certain plays which are unusually important and explains why they are special.

The color analyst adds the dramatic emphasis that the play-by-play analyst suppresses. The

analogy should make clear why both kinds of commentary are useful; the two together are

better than each one alone.
22

A similar analogy is to the proud divide in newspapers between

the “news” side (meta-analysis) and “opinion” (narrative review).

A tricky, interesting question is what meta-analysis and narrative review can say about

influential “breakthrough” papers? Narrative reviews often remark on how a particular study

represents a breakthrough in using new methods or presents a surprising finding that should

be prioritized to be studied further. Because meta-analysis is backward-looking, it is not

ideally-equipped to identify useful breakthroughs. Because narrative review is subjective,

it can look forward and might do better.

An example is De Martino, Camerer and Adolphs (2010). They found that two patients

with damage to the amygdala area of the brain were not averse to losses at all. This is a

tiny finding with a large standard error; it’s a teaspoon of water added to a swimming pool.

Meta-regression is worthless because there is no power to detect an “amygdala damage” vs.

“no amygdala damage” difference if the study were added to our corpus. But despite the tiny

22
Another useful analogy comes fromperformance evaluation in personnel economics. It is well-knownBaker,

Gibbons and Murphy (1994) that objective and subjective measure of performance can be complements. Objec-

tive measures rein in over-the-top subjective evaluation, and subjective evaluations can add in idiosyncratic

information that objective measures are blind to.
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𝑛 = 2, it is a clue that could shed light on the fundamental mechanism underlying loss aver-

sion, and hence deserves further study. Narrative reviews may miss some opportunities to

amplify such interesting studies too, but meta-analysis will always neglect them.

We will conclude with one idea about howmeta-analysis can guide future research. Meta-

regression can actually pinpoint where studies are plentiful and where an additional study

would have the greatest new effect on collective knowledge. A low standard error on a meta-

regression coefficient means we do not need to learn more. A high standard error means

that we do need to learn more. From our dataset, studies (i) other than lab and field exper-

iments, (ii) focusing on specific, non-University student populations, (iii) on continents of

South America, Africa and Oceania, (iv) involving rewards not expressed in monetary terms,

(v) obtaining preferences in methods other than sequential binary methods, (vi) using utility

functions other than CRRA with equal curvature for gains and losses, and (vii) with loss aver-

sion specifications other than Kahneman and Tversky are the areas where we have uncovered

the least data. Interesting new findings about the loss aversion parameter are ex ante more

likely to be in those areas. The old cliché “we encourage future research in these areas” now

has empirical backing.
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