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Abstract

Loss aversion is one of the most widely used concepts in behavioral economics.
We conduct a large-scale, interdisciplinary meta-analysis, to systematically accu-
mulate knowledge from numerous empirical estimates of the loss aversion coeflicient
reported from 1992 to 2017. We examine 607 empirical estimates of loss aversion
from 150 articles in economics, psychology, neuroscience, and several other disci-
plines. Our analysis indicates that the mean loss aversion coefficient is 1.955 with
a 95% probability that the true value falls in the interval [1.820,2.102]. We record
several observable characteristics of the study designs. Few characteristics are sub-

stantially correlated with differences in the mean estimates.
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1 Introduction

Loss aversion is the empirical observation that decisions often reflect a larger distaste
for potential losses, compared to equal-sized gains, relative to a point of reference. Loss
aversion is a core feature of prospect theory (Kahneman and Tversky, 1979; Tversky and
Kahneman, 1992; Wakker, 2010), an explicitly descriptive model of choice under risk and
uncertainty which has been widely applied and cited.! The strength of aversion to loss
compared to attraction to gain is typically captured by a single parameter, .

In his popular-science book, Kahneman (2011) writes that “the concept of loss aver-
sion is certainly the most significant contribution of psychology to behavioral economics”
(p. 300). Loss aversion has been widely applied to many types of economic decisions and
analyses. It is often applied in analyses of experimental decisions over monetary risks
(as in the original Kahneman and Tversky, 1979). However, the use of loss aversion and
dependence on reference points has evolved well beyond its initial application. Applica-
tions include financial asset prices (Barberis, 2013), the equity premium puzzle (Benartzi
and Thaler, 1995), labor supply decisions (Camerer et al., 1997), political power of en-
titlements change (Romer, 1996), majority voting and politics (Alesina and Passarelli,
2019), sectoral trade policy behavior (Tovar, 2009), and selling-buying price endowment
effects in contingent valuation of nontraded goods (Ericson and Fuster, 2014; Tungel and
Hammitt, 2014). Loss aversion also features prominently in behavioral industrial orga-
nization, in theories and evidence of responses to price changes (Heidhues and Kdszegi,
2018).

Several different methods have been used to measure loss aversion. These include
laboratory experiments, representative panel surveys, analyses of natural data, and ran-
domized trials trying to change behavior. Loss aversion has been quantified for monetary
outcomes as well as for non-monetary outcomes, such as health (Attema, Brouwer and
L’Haridon, 2013). Other fields outside economics also utilize loss aversion, including
neuroscience, psychiatry, business and management, and transportation.

Given how widely the concept of loss aversion has been applied in economics and
many other social sciences, it is useful to have the best possible empirical answer about
how large loss aversion is, and how it varies. Omne of the first empirical estimates of
A is reported in Tversky and Kahneman (1992). The authors elicit the preferences of
25 graduate students from elite west-coast American universities using three sessions
of unincentivized lottery-choice experiments. The median A—no mean nor statistic of
dispersion was reported—was A = 2.25 (Figure 1). Many analyses, to this day, cite this

number as the typical degree of loss aversion. For example, the value A = 2.25 is used

IThe 1979 paper is the most widely cited empirical economics paper published from 1970-2005 (see
Table 2 in Kim, Morse and Zingales, 2006). Note also that Fishburn and Kochenberger (1979) docu-

mented loss aversion in a different sample of preferences elicited for decision analysis.
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FIGURE 1: An example of prospect theory utility function. Notes: This is the specification
(3) presented in Section 2, U(x) = 2® for x > 0 and U(z) = —A(—z)? for 2 < 0, with median
parameters of A = 2.25 and o = 3 = 0.88 reported in Tversky and Kahneman (1992).

in numerical simulations of prospect theory in behavioral finance (e.g, Barberis, Huang
and Santos, 2001; Barberis and Huang, 2001, 2008; Barberis and Xiong, 2009; Barberis,
Mukherjee and Wang, 2016; Barberis, Jin and Wang, 2021). Of course, had Tversky
and Kahneman initially reported a different value (e.g., 1.5), these analyses might yield
different findings. Some of these authors are well aware of this issue.

As noted in the latter study, “[...] these estimates are almost 30 years old and are based
on a small number of participants. Given that the values we assign to these parameters
play a significant role in our results, it seems prudent to base these values on a wide range
of studies, not just one.” (Barberis, Jin and Wang, 2021, p. 2665).2

What is the best way to cumulate knowledge about A after thirty years of research?
Our view is that meta-analysis is an indispensable tool for scientific cumulation. Meta-
analysis is a principled, reproducible, open-science method for accumulating scientific
knowledge (and also for detecting nonrandom selective reporting of evidence: Stanley,
2001; Stanley and Doucouliagos, 2012). A meta-analysis uses a clearly specified method
of sampling available studies, coding evidence in a way that is comparable across studies,
and summarizing both regularity and variation across studies. The idea of synthesizing

evidence from multiple studies dates back to the early 1900s (Pearson, 1904; Yates and

2Tt is not our contention that there is a consensus in the academic community around the estimate
A = 2.25, though there may be some anchoring to that value (as we have just described). Our general
contention is that there is no consensus and a lack of confidence in a uniform estimate. In fact, during one
of the early presentations of this paper at the Economic Science Association World Meeting in Vancouver
in 2019, we elicited guesses of our mean parameter. We incentivized the audience to guess correctly with
a CA$50 dollar prize for the closest guess. We have 37 guesses, and 34 participants also reported their
confidence levels (low, medium, or high). Mean guesses (of the mean parameter) were 1.639 with a
standard deviation of 0.599. Of the 34 answers, 20 (58.8%) reported low confidence in their guesses, and
nine (24.3%) fell between 1.8 and 2.1. See Online Appendix F for the full distribution of the guesses.



Cochran, 1938), but the history of modern meta-analysis has its origin in the 1976 AERA
presidential address by Gene V. Glass. He introduced the term “meta-analysis” to refer
to “the statistical analysis of a large collection of analysis results from individual studies
for the purpose of integrating the findings” (Glass, 1976, p. 3). It has been widely used in
evidence-based practices in medicine and policy for at least two decades (Gurevitch et al.,
2018). However, meta-analysis has been mostly absent from highly-selective journals in
empirical economics.?

This paper reports the results of a meta-analysis of empirical estimates of loss aversion.
The dataset comprises 607 estimates reported in 150 papers in economics, psychology,
neuroscience, and several other disciplines.

The toolkit of meta-analysis can give the best available answers to three questions:

1. What is the central tendency in the distribution of A estimates; and how much do

they vary?

2. Does measured A vary systematically across different methods, definition of A, utility

specifications, domains of choice, and types of participants?

3. Is there evidence of selective reporting, or publication bias, which distorts reported

estimates of A compared to the corpus of ideal evidence without such biases?

While the answers to these questions no doubt carry some intrinsic interest to re-
searchers interested in loss aversion, they also have practical validity. For one, this
paper’s mean estimate of A = 1.955 provides a much more informed value of loss aversion
than the original A = 2.25 for researchers to use as an input in financial models (see
above). The results can help researchers do their work better in several other ways.

Imagine a researcher who is interested in loss aversion but not quite sure what steps
to take to measure it or to apply it. First, the researcher might ask: What method
should I use to measure \? What are the most popular methods? Does it make much
difference which one is used? Results on how estimated A’s vary with characteristics of

the measurement method, such as the type of the data (experimental or field), reward

3Prominent meta-analyses in economics include value of a statistical life (Doucouliagos, Stanley
and Giles, 2012; Doucouliagos, Stanley and Viscusi, 2014), intertemporal elasticity (Havranek, 2015;
Havrének et al., 2015), habit formation (Havrédnek, Rusnak and Sokolova, 2017), foreign direct investment
(Irsové and Havrdnek, 2013), minimum wage effects (Card and Krueger, 1995; Doucouliagos and Stanley,
2009), gender wage discrimination (Stanley and Jarrell, 1998), microcredit interventions (Meager, 2022),
behavior in dictator and ultimatum games (Engel, 2011; Oosterbeek, Sloof and van de Kuilen, 2004),
preferences for truth-telling (Abeler, Nosenzo and Raymond, 2019), experimentally-measured discount
rates (Matousek, Havrdnek and IrSovd, 2022), and present-bias in Convex Time Budget experiments
(Imai, Rutter and Camerer, 2021).



(monetary or non-monetary), specification of the utility function, and the definition of
loss aversion, can guide the researcher.*

Second, the researcher may be doing a behavior change intervention leveraging the
psychology of loss aversion. Then she needs a specific estimate of A\, or a plausible range
of values, to use to make a power calculation. Perhaps she is planning to prepay teacher
bonuses, which they can later lose, to motivate them to increase student test outcomes
(Fryer et al., 2012). Is A = 2.25 a good guess, or is there a better guess? Is there a more
refined estimate of A for the subset of studies in the meta-analysis that are most like the
one she is planning? Meta-analysis can help here too.

Third, suppose the researcher has just read review articles about prospect theory and
reference-dependent preferences (e.g., Barberis, 2013; DellaVigna, 2009, 2018; O’'Donoghue
and Sprenger, 2018). Those reviews have a “narrative” programmatic structure in which
results of early and key studies raise fundamental questions that later studies are designed
to answer. The reader is usually left with an understanding of the historical intellectual
trajectory, and what the next wave of studies should try to understand better. The
researcher wonders, is anything important left out of the narrative? The meta-analysis
helps answer this question too. (However, the comparison and complementarities of meta-
analysis and narrative review are subtle and important, so we will return to them in the
conclusion.)

Figure 2 shows the distribution of loss aversion coefficients A in our dataset, where
the median value of the raw data points is 1.69 and the mean is 1.97. The distribution is
right-skewed and has a substantial mass (93.9%) on the range A > 1, corresponding to loss
aversion (as opposed to loss tolerance, A < 1). Applying a Bayesian hierarchical approach
taking into account the uncertainty surrounding the measurements, we find that the
average A in the literature lies between 1.7 and 1.9. Taking into account the fact that many
papers reported more than one estimate (thus producing correlation among estimates),
the average is between 1.8 and 2.1. We also examine whether observed heterogeneity in
reported A can be attributed to some of the observable characteristics of the study design.
The results do not show many strong reliable effects.

Even to economists unfamiliar with meta-analysis, the method should be, in some
ways, familiar. It is essentially an application of econometric techniques to literature
review (see Stanley and Doucouliagos, 2012). Like for any empirical study, the greatest
concern should be the inclusion criteria of the dataset (i.e., selection). While our broad
inclusion criteria are independent of estimates of A, we have little control over publication
decisions (which makes papers more prominent and easier to find) and whether a study is
written at all (i.e., “the file drawer problem”; Rosenthal, 1979), which could be dependent

4These methodological variations can also help us understand the mechanisms behind loss aversion,

along with process measures such as response times, psychophysiology, and neuroscientific data.
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FIGURE 2: Distribution of reported estimates of loss aversion coefficient. Notes: Bins for the
histogram are 0.1 wide. The Kernel density estimate of the distribution is superimposed, using
the Gaussian kernel with Silverman’s rule of thumb for the bandwidth selection. There are
85 cases that report both individual-level mean and median. We keep individual-level medians
from these cases. The z-axis is cut off at 6 for better visual rendering, but the density estimation

keeps five observations with A > 6.

on the values of estimated A\. We consider these issues and how they might affect our
analysis by examining the correlation between estimated A and their standard errors and
by inspecting the shape of distributions of z-scores. As noted elsewhere, no technique, not
even the alternative narrative review, can address this issue perfectly (Borenstein et al.,
2009). Meta-analysis at least has the tools to examine these possible issues quantitatively.

Finally, we note an advantage of meta-analysis is that as new evidence arrives, it can

be easily added to the previous corpus of studies and results can be quickly updated.

Related papers. There are two previous meta-analyses of loss aversion, to which we
contribute a newer and broader scope.” Neumann and Bockenholt (2014) conducted a
meta-analysis of 109 estimates of loss aversion from 33 studies about consumer brand
choice. As we do later in this paper, they use a multi-level, random-effects technique to
account for the variability of estimates, both within and between studies, of the logged-A
parameter. They report a base model estimate of A = 1.49 and an “enhanced model”
estimate of A = 1.73 accounting for sources of estimate variability. Perhaps because of
their narrow focus on consumer choice, their meta-regression controls explain nearly all
of the variability within their data. Notably, the use of external vs. internal reference

points, estimates derived from models that account for both heterogeneity in taste and

SMrkva et al. (2020) ask a question similar to ours, examining how individual differences moderate
the degree of loss aversion. Their approach is different— they conduct five large-scale field surveys with
a total of 17,720 subjects.



process, and unpublished vs. published studies are all associated with lower estimates of
loss aversion.

A different approach was used by Walasek, Mullett and Stewart (2018) to understand
heterogeneity in a narrow domain of mixed gain-loss financial lotteries. Their analysis
used only published experimental studies of mixed lotteries of gains and losses where
original raw data were available for reanalysis. Their corpus is 19 estimates from 17 arti-
cles. Rather than meta-analyzing estimates from the original papers, they re-estimated
parameters for a single model of cumulative prospect theory (i.e., power utility function
with symmetric curvature, o = 3, see equation (3) in Section 2) using the original data.
Their random-effects meta-analysis on the 19 estimates has an average A = 1.31. Despite
their rather strict restrictions, the authors note that there are high levels of methodolog-
ical variability between studies (their data is not very useful in looking at this question

within studies) in both estimates and procedures.

The rest of the paper is organized as follows. Section 2 introduces the concept of
loss aversion in prospect theory. Section 3 describes how we assembled the dataset of
empirical estimates of loss aversion. Section 4 provides results, and Section 5 discusses

their implications.

2 Loss Aversion

In this section, we briefly illustrate some typical definitions of loss aversion in prospect
theory. Consider a situation where an agent makes a choice under risk between prospects
with at most two distinct outcomes. This simplified structure still captures a wide range of
empirical studies examined here. Let (x, p; y) denote a simple lottery, which gives outcome
x with probability p and outcome y with probability 1 — p (Abdellaoui, Bleichrodt and
Paraschiv, 2007; Chateauneuf and Wakker, 1999; Koébberling and Wakker, 2005). A key
assumption of prospect theory is that outcomes are evaluated as gains and losses relative
to a reference point. For simplicity of exposition, in this section, we assume the reference
point to be 0, so that the sign of the outcome indicates whether it is a gain or a loss.
We call a lottery non-mized if two outcomes have the same sign (i.e., either x,y > 0 or
x,y < 0) and mized if one of the outcomes is positive and the other outcome is negative.
Without loss of generality, we assume that > 0 > y when we deal with a mixed lottery.

In this setup, both original prospect theory by Kahneman and Tversky (1979) (here-

6Though not specifically excluded by the aforementioned criteria, the authors also excluded studies
that relied on adaptive questions because of concerns about how such techniques would affect their
maximum likelihood estimation procedures (i.e., Abdellaoui, Bleichrodt and L’Haridon, 2008; Wakker
and Deneffe, 1996).



after OPT) and its modern incarnation, cumulative prospect theory of Tversky and Kah-
neman (1992) (hereafter PT), postulate that the agent evaluates non-mixed prospects
(x,p;y) withz >y >0o0rz<y<0by

w*(p)U(x) + (1 = w*(p)) U(y), (1)

and mixed prospects (x, p;y) with z > 0 > y by

wh(p)U(x) +w™ (1= p)U(y), (2)

where w® : [0,1] — [0,1] is a probability weighting function for gains (s = +) or for
losses (s = —), with w*(0) = 0 and w®(1) = 1, and U : R — R is a strictly increasing
utility function satisfying U(0) = 0. Tversky and Kahneman (1992) assume that the
utility function U and the probability weighting functions wt and w™ exhibit diminishing
sensitivity. Note also that wt = w™ is assumed under OPT, and expected utility is a
special case of PT where w*(p) = w~(p) = p for all p € [0, 1].

A particularly popular functional apparatus is the one using different power utility

parameters for gains and losses, following the approach of Tversky and Kahneman (1992):
x® ifx >0
U(x) = , (3)
—A—z)? ifx<0
where A > 0 is the loss aversion coefficient, the target variable of interest in this study.
Values of A > 1 are taken to indicate loss aversion, whereas values of A < 1 indicate
loss tolerance (also referred to as “gain seeking”), with A = 1 indicating loss neutrality.
The utility function is concave for gains and convex for losses, reflecting diminishing
sensitivity, when a, 8 € (0, 1).

Notice that mixed prospects are necessary to identify loss aversion, since A cancels
out in the evaluation of pure-loss prospects such as in equation (1). In this particular
formulation, the loss aversion parameter is dependent on the scale of the data, and thus
not uniquely defined due to scaling issues (see Wakker, 2010, Section 9.6, for a theoretical
discussion). If, on the other hand, the two power parameters are assumed to be identical,
i.e. a = (8, this issue does not occur. It also does not occur for different utility parameters
using alternative functional forms, such as exponential utility (Kébberling and Wakker,
2005).

Beyond the popularity of the formulation provided above, it is important to note that
several different definitions have been proposed and used in the literature. Kobberling
and Wakker (2005) and Abdellaoui, Bleichrodt and Paraschiv (2007) provide extensive
discussions of such alternative definitions, which we summarize in Online Appendix B.
Furthermore, under PT decision weights (given by probability weighting functions w™

and w~) naturally enter the definition of loss aversion (Schmidt and Zank, 2005). The

8



combination of different definitions with different functional forms for utility and weight-
ing functions results in a large variety of different formulations. Our strategy in this
meta-analysis is simply to take the estimate emerging from the formulation of the au-
thors. We code the type of definition adopted, to be able to determine the correlation of
definitions and functional forms with estimates.

A definition that more clearly departs from the apparatus presented above is the
expectation-based reference-dependent model of Készegi and Rabin (2006, 2007). In this

model, an agent evaluates a consumption outcome x by
v(@ | r) =m(x) + p(m(z) —m(r)),

where the function m represents the direct utility from consumption and the function
1 represents the “gain-loss” utility from departures from a reference point r. In typical
applications of the model, the consumption utility m is assumed to be linear, so that

m(z) = x, and a piecewise-linear gain-loss utility function is adopted:

nz itz>0
p(z) = .
Az if 2 <0

where the parameter n > 0 captures the importance of the gain-loss utility relative to

the consumption utility, and A\ again captures loss aversion.”

3 Data

3.1 Identification and Selection of Relevant Studies

In order to deliver an unbiased meta-analysis, we first identified and selected relevant
papers following unambiguously specified inclusion criteria. The main criterion is to
include “all empirical papers that estimate a coefficient of loss aversion.” Note that,
under this criterion, we include papers that use choice data from laboratory or field
experiments and also non-experimental, naturally occurring data, including stock prices,
TV game shows, and surveys on transportation.

We searched for relevant papers on the scientific citation indexing database Web of
Science. The initial search, made in the summer of 2017, returned total hits of 1,547
papers. As a first step of paper identification, we went through titles and abstracts and
threw out 833 papers that were irrelevant to our study. We then read the remaining
papers, applied our inclusion criteria based on the content, and coded information (de-
scribed in Section 3.2 below). Finally, we posted a message on the email list of the

Economic Science Association to ask for relevant papers (in February 2018).

"For small to modest-scale risks, consumption utility can be taken to be approximately linear (K8szegi
and Rabin, 2007; Rabin, 2000).



In the initial search phase, we cast a net also to identify papers that estimate the
degree of loss aversion in riskless choices, through measuring the discrepancy between
willingness-to-pay (WTP) and willingness-to-accept (WTA). However, in reading many
of these papers, we discovered that while the authors had measured WTP and WTA
for a given item, they had not intended to do so as a way to estimate the loss aversion
coefficient. While it is straightforward to impose a certain linear utility structure on such
papers to recover a loss aversion coefficient, we viewed it as problematic to impose our
own assumptions on the work of others, and thus, faced with no better option, did not
include these papers.

The search and selection procedure is summarized in Online Appendix A.1. We
identified 150 papers at the end of this process. Twenty papers are unpublished at the

time of the initial data collection (Summer 2017).

3.2 Data Construction

We assembled the dataset for our meta-analysis by coding relevant information—estimates
of the loss aversion coefficient and the associated standard error, characteristics of the
data, and measurement methods (Brown et al., 2024). The primary variables of interest
are estimates of the loss aversion coefficient A\. These estimates come in two different
forms: (i) aggregate-level, where a single A for the “representative” agent/subject is es-
timated by pooling data from all subjects in a study; (ii) individual-level, where A is
estimated for each subject in a study and the summary statistics of empirical distribu-
tion, typically mean or median, are reported. We have a dummy variable capturing the
type of reported estimates. We also coded standard errors (SEs) of parameter estimates
as a measure of the estimate’s uncertainty /precision and the study’s quality. All conven-
tional meta-analyses require SEs to calculate weighted averages and to correct for the
heteroskedasticity of meta-regression. Other measures of study quality, when known, can
be easily included in these weights. When SEs are not reported, we reconstructed them
from other available information such as standard deviation (SD), p-value (of the null
hypothesis of loss neutrality), or the inter-quartile range (IQR).®

We also coded variables describing the characteristics of the data and measurement
methods. These variables include: type of the data (e.g., experimental, non-experimental,

TV game show); location of the experiment (e.g., laboratory, field, online); types of reward

8We calculated /approximated 68 SEs from other available information: 64 from IQR and sample size
and four from p-values. Use of the IQR to infer the SE of the mean (from an approximation of the
standard deviation, SD =~ 1.35 x IQR) is, in principle, only legitimate if the parameters are normally
distributed in the population. That assumption is clearly a stretch. Nevertheless, obtaining even an
“approximate” SE seemed preferable to dropping the observation entirely, or to making other, even

stronger, assumptions allowing us to keep the observation.
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(e.g., real or hypothetical, money, health, time); subject population (e.g., children, college
students, general population, farmers); definition of loss aversion coefficient (as described
in Online Appendix B); utility specification (e.g., CRRA, CARA); and several others.
Table A.1 in the Online Appendix lists all variables coded in the study.

The set of papers we included spans a wide range of disciplines (see Table A.3 in the
Online Appendix). Since fields/journals have different reporting cultures and standards,
we could not always retrieve all the necessary information from reading papers. We thus
emailed the authors of the papers when some essential summary statistics of the loss
aversion coefficient or sample size information were missing.”

While study quality is an ongoing concern for meta-analysis in general (and one that
we will revisit in our concluding section), we record quantitative values, such as each
estimate’s precision and the impact factor of the journal in which the study was published,
as measures of study quality in line with past precedent (Stanley and Doucouliagos, 2012).
Meta-analyses in economics routinely code several dimensions of research quality, such as
whether the study accounts for endogeneity, is experimental, uses panel data, etc. These
factors are then included in a meta-regression to estimate the effects of study quality
differences and to isolate the findings from higher-quality studies. Here, we recognize
quality differences by coding the impact factor of the journal where the study is published,

the experimental nature of the study, the subject pool, and the type of reward used.

3.3 Descriptive Statistics

We identified 150 articles that report an estimate of the loss aversion coefficient X. See
Online Appendix G for the full list of articles included in our meta-analysis. Among
these, 130 articles were published in 78 journal outlets (including eight articles pub-
lished in the “Top 5” journals in economics). The dataset includes papers from a variety
of disciplines: economics, management, psychology, neuroscience, medicine, psychiatry,
agriculture, environment, transportation, and operations research (see the list of journals
and their classifications in Table A.2 in the Online Appendix).

We also identified where the data (either experimental or survey) were collected for
147 articles in the dataset. Most of these articles report estimates from data collected in a
single country. Ten of them collected data from two to three countries/regions, and three
of them (L’Haridon and Vieider, 2019a; Rieger, Wang and Hens, 2017; Wang, Rieger and
Hens, 2017) conducted large-scale cross-country studies, collecting data from more than

30 countries/regions. In total, the estimates of the loss aversion coefficient comprised in

9We contacted the authors of 51 papers asking for additional clarification on 175 estimates (i.e., mean,
SE, or the number of observations). If the authors did not respond to our initial request, we sent an
additional email. Overall, we received 39 responses. Of those, 28 responses were ultimately useful and
we recovered additional information on 78 estimates. The remainder had to be imputed.

11



TABLE 1: Study characteristics.

Frequency Share (%) Frequency Share (%)
Total number of studies 185 100.0
Data type Reward type
Lab experiment 98 53.0 Money 154 83.2
Field experiment 29 15.7 Other 14 7.6
Other field data 20 10.8 Consumption good 8 4.3
Classroom experiment 18 9.7 Mixed 5 2.7
Online experiment 17 9.2 Health 2 1.1
Game show 3 1.6 Food 1 0.5
Subject population Environment 1 0.5
University population 91 49.2 Continent
General 63 34.1 Europe 78 42.2
Farmer 13 7.0 North America 56 30.3
Mixed 5 2.7 Asia 25 13.5
Children 4 2.2 Africa 8 4.3
Elderly 3 1.6 Oceania 7 3.8
Capuchin monkey 1 0.5 South America 6 3.2
Unknown 5 2.7 Multiple 3 1.6

Notes: In two studies, the geographic location of the data is unknown. These studies were run
online through Amazon’s Mechanical Turk or a mobile app, and the authors did not specify

what geographic controls were used.

our dataset come from 71 countries/regions (see Figure D.1 in the Online Appendix).

Next, we look at the basic design characteristics of the studies. We have 185 “studies”
reported in 150 papers, where a study is defined by a combination of several variables:
type of the data, location of data collection, subject pool, type of reward, and continent
of data collection. The frequency of each design characteristic is shown in Table 1.

The majority of our data comes from laboratory experiments, but we also have stud-
ies using non-experimental data such as surveys, stock market data, and game shows.
Subjects were mostly recruited from the pool of university students or the general pop-
ulation. There is also a small set of studies that recruited special populations such as
financial professionals, entrepreneurs, managers, and patients with psychiatric disorders
or gambling problems. The type of reward used in the studies is mostly monetary. About
three-quarters of the studies were conducted in Europe or North America.

Next, we look at the main variable of interest, the estimated coefficient of loss aver-
sion. We have a total of 607 estimates in the dataset (Table 2). About half of these
estimate the degree of loss aversion of a “representative” subject by pooling data from
all subjects together (we call these aggregate-level, or simply aggregate, estimates). The

other half estimated the coefficient for each individual subject in the study and reported

12



TABLE 2: Types of estimates.

All estimates With SE

Frequency Share (%) Frequency Share (%)

Aggregate-level 281 46.3 220 53.0
Individual-level mean 160 26.4 126 30.4
Individual-level median 166 27.3 69 16.6
Total 607 100.0 415 100.0

Notes: There are 85 cases where both the mean and median of the distribution of individual-
level estimates are reported. “With SE” indicates the observations where SEs are available. In
addition, there are four aggregate-level estimates for which SEs are approximated with reported
p-values, and 64 individual-level medians for which SEs are approximated with IQR. SEs are

imputed for the rest of the 124 observations (see Section 4.2).

summary statistics of the distribution, either mean or median. There are 85 cases where
we have both the mean and the median of the distribution of the loss aversion coefficients
estimated at the individual level.

Finally, we look at the specification of the functional form of U and the definition
of loss aversion A (Table 3). There are 302 observations that assume the CRRA form
for the utility functions as in equation (3), following Tversky and Kahneman (1992), but
221 of them assume and estimate a common curvature for gains and losses (o = (3). We
observe less variation in the specification of reference points and the definition of loss
aversion coefficients. Three-quarters of the observations set the reference point at zero,
but our dataset also includes studies where reference points are assumed to be subjects’
status quo or expectations. More than 80% of the observations estimate the loss aversion
coefficient A as Tversky and Kahneman (1992) define it.

4 Results

We structure the results into three distinct parts. We start with a non-parametric analysis
of the reported loss aversion coefficients and their SEs. We subsequently fit random-effects
meta-analytic distributions to the data, and document the estimated mean loss aversion.
Finally, we conduct a series of meta-regressions to see to what extent we can explain the
estimated between-study variance.

13



TaBLE 3: Utility function, loss aversion, and reference point.

Frequency Share (%) Frequency Share (%)
Total number of estimates 522 100.0
Loss aversion A Functional form of U
Tversky-Kahneman 445 85.2 CRRA 302 57.9
Kobberling-Wakker 37 7.1 CARA 53 10.2
Koszegi-Rabin 9 1.7 Linear 73 14.0
Other 3 0.6 Other parametric 32 6.1
Not reported 28 5.4 Nonparametric 16 3.1
Reference point Not reported 46 8.8
Zero 394 75.5
Status quo 60 11.5
Expectation 18 3.4
Other / Not reported 50 9.6

Notes: There are 85 cases where both the mean and median of the distribution of individual-
level estimates are reported. We keep only one measure from each of these observations. See

Online Appendix B for definitions of loss aversion.

4.1 Nonparametric Analysis

We start our presentation of the results by showing some non-parametric patterns in the
reported loss aversion coefficient A. Since we do not need SEs for this analysis, we can
make use of all the estimates of loss aversion we coded in the dataset. Figure 3A shows
the distribution of all the coded loss aversion parameters. The mean of the parameters
is 1.97. Given the right skew in the distribution, the median is considerably lower than
the mean, at 1.69.

Figure 3B shows the same set of estimates, but now plots separate density functions
for the estimates obtained from aggregate-level means (n = 281), individual-level means
(n = 160), and medians (n = 166). Aggregate-level estimates can be seen to have
the lowest mode (around 1.33), with individual-level medians having a slightly higher
mode around 1.88. Means of individual-level estimates show a fat right tail, indicating
a higher frequency of larger values. Table 4 shows summary statistics of reported A for
each type of measurement. The means of aggregate-level estimates and individual-level
medians are close together, at 1.95 and 1.84, respectively. The somewhat lower mean
of the latter results from fewer very large observations amongst medians than amongst
aggregate estimates. The individual-level means have the largest variation (SD = 2.61
versus 1.68 for aggregate means and 0.76 for individual-level medians), including some
of the smallest estimates as well as some of the largest. The truncated nature of the

distribution then results in the highest mean by far, 2.94.
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FIGURE 3: Distribution of loss aversion parameters. (A) All reported estimates combined. (B)
Separated by the type of estimates. Notes: Panel A is identical to Figure 2. In panel B, the
Kernel density estimate of the distribution of reported A is plotted, using the Gaussian kernel
with Silverman’s rule of thumb for the bandwidth selection. All 607 estimates in the data
are used for estimation. In the Online Appendix, Figure D.3 shows density plots of log(\),
Figure D.4 shows histograms of A separated by the type of estimates, and Figure D.5 shows the
empirical CDF of A for each type of estimates.

TABLE 4: Summary statistics of reported A.

Type n  Mean SD Q1 Median Q3  Min Max

Aggregate-level 281 1950 1.681 1.274 1.520 2.180 0.040 23.460
Individual-level mean 160 2.935 2.605 1.618 2.180 3.395 0.110 19.861
Individual-level median 166 1.844 0.756 1.417 1.800 2.090 0.110  7.500

All 522 1970 1.370 1.310 1.690 2.288 0.040 23.460

Notes: There are 85 cases that report both individual-level mean and median. We keep

individual-level medians from these cases in the last row of the table.

The differences between measurement types above cannot be interpreted causally.
That is, the different measurements generally derive from different studies and are based
on different data, so that the observed differences cannot be directly ascribed to the type
of measurement used. To gain insight into the effect of measurement type, we can conduct
an analysis based on the 85 studies for which both means and medians are reported. With
a mean of the means of 3.47 (median of means, 2.08) and a mean of the medians of 1.71
(median of medians, 1.69), the results confirm the ones for the overall sample (see Figure
D.6 in the Online Appendix). That is, the individual-level estimates tend to be rightward
skewed, and this strongly affects the aggregate estimate reported in a paper when means
of the individual-level estimates are used instead of medians. This issue, however, will

be at least partly remedied by the observation that means of individual-level estimates
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also tend to come with increased SEs, which will, in turn, lead to increased pooling of
the larger estimates in our meta-analytic estimations.

The earliest evidence recorded in our dataset is Tversky and Kahneman’s (1992)
famous 2.25. See Figure D.2 in the Online Appendix for the time trend of reported
estimates. Half of the estimates in the data are found in papers published after 2015.
Individual-level estimates appear in the dataset after 2006, in part due to the rise of
common experimental elicitation procedures. The raw data do not reveal a clear time
trend, suggesting that estimates have remained the same on average for the last 30 years.

Just looking at the raw reported A, Figure 3 and Table 4 suggest that the “average”
loss aversion coefficient A would locate somewhere between 1.8 and 2.9. At the same time,
there is high dispersion in the reported A. These rough initial estimates, however, do not
take the quality of the estimate into account. The latter can be assessed by means of
the standard error associated with each estimate, which we can use to calculate a proper
“meta-analytic average” by weighing each estimate by its precision, i.e., the inverse of its
standard error. Estimates falling far from the mean will then be given less weight to the

extent that they have large associated standard errors.

4.2 Precision of Estimates

A common tool of meta-analysis is the so-called “funnel plot” which visualizes the rela-
tionship between reported estimates and their associated SEs (Stanley and Doucouliagos,
2012). Figure 4 illustrates this relationship using data points where we have both a value
for A and an associated SE (either reported in the paper or re-constructed from other
available information by us).

Figure 4 tells us several things about empirical estimates of loss aversion. Loss aversion
may be imprecisely estimated, for instance, because of a small sample size, or because of
other characteristics of the design. In our data, estimates that are far from 1 have higher
SEs. They are not precisely estimated coefficients due to, for example, small sample size
or other issues with the design or behavior. More precisely estimated A’s tend to cluster
between 1 and 2. Second, 398 out of 419 estimates (95%) are larger than 1, producing
a massive asymmetry in the funnel plot. Third, about 76.6% (305 out of 398) of A > 1
estimates report results that are significantly different from 1 (based on the two-sided
Wald test with the usual significance threshold of p < 0.05).

Table 2 above shows that 192 out of our 607 recorded estimates are missing SEs.
We approximate SEs from IQRs and p-values for 68 of these observations (see footnote
8), which leave 124 SEs missing. Since standard errors are a fundamental ingredient for
meta-analysis because they provide weights for the observations, we thus risk losing many
observations, including the iconic measure of 2.25 reported by Tversky and Kahneman

(1992). If studies not reporting any SEs are different from studies reporting them, we
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FIGURE 4: Relationship between reported A and associated SE. Estimates with corresponding
SEs reported are included (n = 419). Notes: For observations that have both individual-level
mean and median, we keep the median in this figure. The vertical dashed line corresponds to loss
neutrality A = 1. Two dash-dotted curves represent the boundaries for statistically-significant
loss aversion (A > 1) and loss tolerance (A < 1). The z-axis is cut off at 6, and the y-axis is

displayed in the log-scale for better visualization.

may furthermore distort our estimates systematically.

To overcome this issue, we impute the missing SEs using the subset of the data for
which we have both A and its associated SE. The basic idea is to estimate the parameters
characterizing the distribution of SEs in the data, assuming that log(se) is drawn from
a normal distribution N (us,02%) and that the mean depends on the size of reported
A, fhse = Qse + BseA. We then impute missing SEs using the estimated distributional
parameters (0, Bse, 0se) and reported A. See Online Appendix A.3 for the details. Online
Appendix C.3.2 also shows that our estimates and conclusions of this paper would not
particularly change if these imputed values were dropped. We will, from now on, make

use of the full set of observations.

4.3 Average Loss Aversion in the Literature

The main goal of our meta-analysis is first to obtain the “best available” estimate of the
loss aversion coefficient A combining the available information in the literature and then
to understand the heterogeneity of reported estimates across studies. Both goals can be

informed by the data using a Bayesian hierarchical modeling approach.
Setup. Consider the dataset (\;, se;)™,, where \; is the ith measurement (or obser-

vation) of the loss aversion coefficient in the dataset and se; is the associated standard

error that captures the uncertainty surrounding the estimate. In the benchmark model,
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we assume that the 7th reported estimate \; is normally distributed around the parameter

A
i | Aiy ses ~ N(\g, s€2), (4)
where the variability is due to the sampling variation captured by the known standard
error se;. The parameter ); is often referred to as the “true effect size” in meta-analysis.
Sampling variation is part of the observed variation in the reported estimates (\;)™,
but in addition, there may be “genuine” heterogeneity across measurements (due to
different settings, for example). We model this by assuming that each ); is, in turn,

normally distributed, adding another level to the hierarchy:
Xz’ | )‘07 T~ N(/\07T2)7 (5)

where ) is the overall mean of the estimated loss aversion parameters \;, and 7 is its
standard deviation, capturing the variation between observations in the data. The overall
variance in the data, therefore, consists of two parts, the between-observation variance,
72, and the individual sampling variation coming from measurement uncertainty, se. This

can be clearly seen by combining expressions (4) and (5) into one:

Ai | Ao, 7, 585 ~ N (Mo, 72 + se?).

Model estimation. We start from fitting the model expressed as equations (4) and
(5), re-stated as model M1 here, to the data (\;, se;)7:

i | A, seq ~ N (N, se?),
Xi | Aoy T~ N (Ng, 2),
Ao ~ half N(1,5),
7 ~ half N(0,5),

(M1)

where “half N7 indicates the half-normal distribution which “folds” the normal distri-
bution N'(0,0?) at its mean to have nonzero probability density for values greater than
or equal to 0. This model incorporates the assumption that every observation is statis-
tically independent, and that the observations are normally distributed. We will relax
these rather strong assumptions in due time.

We estimate the model in Stan (Carpenter et al., 2017) using Hamiltonian Monte
Carlo simulations, and launch it from R (R Core Team, 2020) using RStan (Stan De-
velopment Team, 2020). We chose half-normal distributions with a standard deviation
of 5 for priors for the population-level parameters Ay and 7, but the estimates are not

sensitive to changing the prior, given the amount of data we have (see Online Appendix
C.3.3).
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FIGURE 5: (A) Density plot of loss aversion coefficient, estimated \; versus reported );. (B)
Posterior draws of the overall mean \g. (C) Posterior draws of the heterogeneity parameter
7. Notes: The dashed curve in panel A indicates the density of the observed loss aversion
parameters, A;; the solid curve in panel A indicates the density of the estimated parameters,
;. Observations above six are not shown in panel A for better visualization. The black dots
and lines in panels B and C represent the posterior means and the 95% credible intervals of \g

and 7, respectively.

The estimated overall mean A is 1.809 with a 95% credible interval (CrI) of [1.739, 1.878].10-11
The mean is clearly lower than the non-parametric result that we saw above, which was
1.97. This is shown in Figure 5AB. The density of estimated ); is lower than the one of
observed \; for values above 2.5. The same occurs for values below one. This is meta-
analytic pooling at work—estimates that fall far from the mean are shrunk towards more
plausible values, with the amount of shrinkage proportional to the standard error. See
discussion in Online Appendix C.2.

The estimates produced are, of course, only valid conditional on our assumptions.
We already know that the normality assumption seems a stretch, given the skewed dis-
tribution of the reported A. To see this, we can take a look at the posterior predictive
distribution—the distribution of loss aversion coefficients we would expect new observa-
tions Apew to display, provided that the characteristics of the studies from which these
observations are obtained are similar on average to those of past studies—and compare

it to the distribution of actual observations.'? This is shown in Figure 6A. Relatively

10A Bayesian credible interval (Crl) of size 1 — « given data D is an interval [L(D), U(D)] such that
P(L(D) <0 <U(D)) =1— a, where 0 is the parameter of interest. Unlike the (frequentist) confidence
interval, CrI has a literal probabilistic interpretation: given the data, there is a 100 x (1 —«)% probability

that the true parameter value is in the interval.
" Results from the frequentist random-effects meta-analysis are presented in Online Appendix E. We

obtain largely identical estimates.
12Formally, the posterior predictive distribution is written:

7 Chaews | (A1) = / 7 O | 0)7 (8] (A1) ),
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FIGURE 6: Distributions of reported and estimated A, and posterior predictive distribution of
A. (A) Assuming a normal distribution for the population level (model M1). (B) Assuming a

log-normal distribution for the population level (model M2).

to the actual observations—either as reported ()\;), or as estimated (\;)—the posterior
predictive distribution overestimates the likelihood of values smaller than 1, while it un-
derestimates the likelihood of intermediate values between 1 and 2. It does not attribute
any probability to values beyond 4, which are not uncommon in the data. It thus seems
desirable to look for a model that may provide a better fit to the data.

We thus extend the baseline model M1 in two ways. First, we use a log-normal distri-
bution for the population-level distribution. Second, we explicitly model the nesting of
observations in papers, in order to overcome any potential distortions deriving from non-
independence of observations. Remember that our 607 observations have been obtained
from 150 distinct papers, the largest number of observations in a single paper being 53
(Rieger, Wang and Hens, 2017; Wang, Rieger and Hens, 2017). The independence as-
sumption seems rather heroic in this case. To do this, we introduce paper-level estimates
as an additional hierarchical level. Let A, be the ith estimate reported in paper p. We

formulate a model as follows:
Mpic | Apis 5€pi ~ N (Npiy s3),
sz- | df,Xp,ap ~ t(df,xp,af,),
Ap | A5, 7e ~ log N'(Xg, 7),
Ay~ N(1,5), (M2)
7, ~ half N(0,5),
df ~ half N (0,5),
o, ~ half N(0,5).

where 6 = ((A\;)™,, Ao, T) is a vector of model parameters (Gelman et al., 2014). Evaluating this integral
is difficult, but we approximate it by drawing ALy ~ N ()\és), 7(23)) using posterior simulations ()\és), T(s))5
s=1,...,N. We have 8,000 draws (2,000 iterations x 4 chains) of Apew-
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TABLE 5: Summary of estimation results.

Distributional assumption Posterior of A\g Posterior of 7

Model Obs. level Paper level Pop. level Mean SD  25% 97.5% Mean SD 25% 97.5%

M1 Normal Normal 1.809 0.036 1.739 1.878 0.746 0.028 0.695 0.803
M2 Normal Student-t  Log-normal 1.955 0.072 1.820 2.102 0.743 0.342 0.604 0.904

Notes: In Model M2, (\g,T) are calculated from the log-normal parameters (\§, ;) by Ao =
exp(Aé + 7'@2/2) and 72 = [exp(Tg) —1] exp(2)\€ + 7_82)

The model M2 now explicitly models the nesting of the estimated observation-level
parameters, Xp,-, in paper-level estimates, Xp. The former are modeled as following a
robust student-¢ distribution instead of a normal distribution to account for observed
outliers.!® The latter are modeled as following a log-normal distribution. Note the super-
/sub-scripts £ in the location and scale parameters (S, 77) of the log-normal distribution.
We can calculate the mean and the median of the distribution by exp(\§ + 72/2) and
exp(A5), respectively, exploiting the properties of the log-normal distribution.

We again start by examining the fit of the model to the data, and by summarizing
the population-level parameters. The model fit is shown in Figure 6B. The log-normal
distribution can now be seen to fit the estimated paper-level data well. The distribution
of the paper-level observations has more probability mass between about 1 and 3, but
less beyond that point, compared to the actual study-level observations. The degrees of
freedom of the student-t distribution are estimated at 1.32, thus vindicating the use of the
robust distribution. The mean loss aversion parameter obtained from this estimation is
1.955, with a 95% CrI of [1.820,2.102]. Notice, however, that even though this estimate
is nearly identical to the one obtained under the standard model at the outset, that
occurs by coincidence rather than being a feature of the model. One can further see that
there is now increased uncertainty surrounding the prediction interval. This is indeed
natural, since the paper-level estimates are surrounded themselves by larger amounts of

uncertainty, which is then passed up the hierarchy to the aggregate parameters.

Robustness checks. Online Appendix C.2 presents estimation results for two addi-
tional models, but our preferred model M2 fits better than these “intermediate” models.
We also estimated the models under different priors or using the “complete” data includ-

ing only observations where associated SEs are available, and obtained similar conclu-

13We estimate the degrees of freedom of the distribution, df, endogenously from the data. This allows
us to determine whether the student-¢ distribution provides a good fit, which is the case if the degrees of
freedom are small, or whether it converges to a normal distribution, which is the case for large degrees
of freedom (Kruschke, 2010).
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sions. These robustness checks are presented in Online Appendix C.3.

Heterogeneity between studies versus between individuals. An interesting ques-
tion concerns how the heterogeneity between studies we document compares to typical
levels of heterogeneity between individuals. While our data are ill-suited to answer this
question in general, Figure 7 provides an indication by comparing the study-level esti-
mates of loss aversion obtained from model M2, sz" to the between-subject distribution
of loss aversion in the data of L’Haridon and Vieider (2019a), containing estimates for
3,000 students from 30 countries. Both distributions display a log-normal shape, and have
peaks in their densities between 1 and 2. The individual-level estimates are somewhat
more dispersed, having slightly more probability mass on small values below 1, as well
as more probability mass on values above 2.5. Overall, however, the two distributions
are similar. This illustrates just how much heterogeneity we find between studies, which
may arguably be driven at least in part by differences in experimental designs, model
definitions, and estimation methods.!*

The comparison shown here comes with a large caveat—individual-level distributions
from other papers may look very different. This also goes back to the point on study
quality we made above. Given suitable restrictions on choice lists and modeling assump-
tions, it would be easy to produce individual-level distributions that are narrower than
the one shown here. On the other hand, wide choice lists, general definitions, and nois-
iness in measurements can all contribute to much wider distributions. It can indeed be
shown that, given a wide enough range of possible estimates, the location parameter of
the log-normal posterior predictive distribution fit to the individual-level estimates will
decrease systematically as the proportion of random choices increases, while the disper-
sion will increase in random choices.!® This goes to show just how many different factors

may impact the estimation of loss aversion coefficients.

14We note one finding which shows strong between-subject heterogeneity and its association with IQ.
Chapman et al. (2018) report data from an incentivized representative survey of Americans measuring
loss aversion and other behavioral parameters. In the representative survey, the median A is 0.99. In a
college sample using a highly similar protocol, the median A is 1.84. In the survey of Americans, there
are substantial correlations (around 0.2-0.3) between IQ and loss aversion. This paper is not included
in our meta-analysis because it fell outside our time window. However, it uses both a different design
(optimized adaptive estimation) and features several important within-study measures of heterogeneity,
especially IQ. Since this is the only study to report cross-IQ heterogeneity, meta-regression of that feature
will add little to general conclusions. Such a study could therefore feature prominently in a narrative

review (for reasons discussed in our conclusion).
5Note that the range one can theoretically estimate will depend both on the measurement obtained

and the definition of loss aversion. For instance, a narrow choice list in the mixed domain (z > 0 > y) may
come up with a narrow range of estimations if the definition of loss aversion is taken to be A = z/(—y).
For a definition A = U(x)/(=U(y)), however, the range resulting from that same choice list could be
very wide if the measurements of U allow for extreme values.
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FIGURE 7: Distributions of estimated Xpi, compared to individual-level estimates from
L’Haridon and Vieider (2019a). Estimates from L’Haridon and Vieider (2019a) follow the

original hierarchical setup with country-level fixed effects reported in that paper.

4.4 Explaining Heterogeneity

We observe a non-negligible amount of between-paper heterogeneity (expressed in esti-
mated 7 in Table 5, model M2) among reported estimates of A. In this section, we seek
to understand the source of this variability in order to provide a tentative answer to
our second key question: “Do reported estimates of A systematically vary by underlying
design characteristics for measurement of loss aversion?”

Remember that we coded several features about the characteristics of the study design
(Table A.1 in the Online Appendix). Figures D.10 and D.11 in the Online Appendix
provide a first look into how these design features are related to reported estimates of .
Each panel presents how the reported A varies by underlying design characteristics. We
do observe some patterns in the figure, but the effects appear rather weak and it is not
clear if these relations are systematic and robust.

We approach this question with a random-effects meta-regression, which extends our
previous random-effects model by incorporating coded features of the observation or the
paper into the model. More precisely, we set up a new model, which expands model M2
by allowing for the location of the observations to be systematically shifted depending

on observed characteristics of the observation or the paper. The model looks as follows:
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Api | Xpia S€pi N(Xpiv 56?;1)7
Npi | df Xy, 0, B~ t(df , Xy + X8, 02),
Ap | 20, 70 ~ log N'(Ag, 77),
Ao ~ N (1,5),
7, ~ half N'(0,5),
df ~ half N (0,5),
o, ~ half N(0,5),

where X,,; is a vector of study characteristics associated with ith observation reported in
paper p. These characteristics consist mostly of dummy variables taking the value of 0
or 1, with 8 a vector of coefficients. To facilitate the interpretation of the constant, non-
dummy independent variables included in vector X,; are mean-centered—each coefficient
in the vector # then captures the additive effect on the paper-level mean Xp, relative to
the “baseline study” (characterized by the omitted categories in dummy variables and
the means of non-dummy variables) which will become clear later.

Estimation results are presented in Figure 8. First, the posterior mean of the estimated
Ap= for the benchmark study p* is 1.981 (95% Crl = [1.582,2.380]). Each estimated
coefficient in 3 captures the effect of the study characteristic from this benchmark value.

As we have seen above in Section 4.1, the type of estimates reliably captures the
variation in reported A— individual-level means tend to be higher than the other two
types of estimates, due to skewed distributions of individually-estimated A. We also find
that field experiments are associated with higher A compared to laboratory experiments
and studies recruiting general population samples are also associated with higher val-
ues of A compared to the studies with a population of university students. We do not
observe differences between studies using monetary rewards and non-monetary rewards,
but survey studies tend to produce lower estimates of A than the binary lottery choice
tasks, which are common in laboratory experiments. In terms of the specification of the
value function, it does not seem to matter much which functional form (CRRA, CARA,
etc.) one assumes for the utility function U, or whether reference points are assumed
to be zero, status quo, or expectations. Studies estimating A following the definition by
Ké&bberling and Wakker (2005) produce higher A compared to the standard Tversky and
Kahneman’s (1992) definition, but the effect is modest.

16We have 10 estimates of A reported in eight papers that use the definition of loss aversion according
to Kdszegi and Rabin (2006, KR). Since the KR formulation incorporates consumption utility (as we
discuss in Section 2), caution is needed when comparing estimates of A using the KR formulation and
other estimates of A following the standard Tversky and Kahneman’s (1992) definition. DellaVigna
(2018), for example, suggests that a loss aversion of 2.25 in Tversky and Kahneman (1992) translates
into a loss aversion of 3.35 in KR (footnote 16, p. 674).
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FIGURE 8: Bayesian random-effects meta-regression. Posterior distributions of coefficients 3,
together with posterior medians (black dot), 66% (thick solid line) and 95% (thin solid line)

credible intervals, are shown. Table D.1 in the Online Appendix presents the result in a table

format.
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Taken together, our Bayesian meta-regression analysis uncovers some factors that are
associated with the size of reported loss aversion coefficients, but it is still a difficult task
to draw a complete picture of the observed heterogeneity. We note that 15.1% of the

between-observation variance is explained by covariates.

4.5 Publication Bias

The cumulation of scientific knowledge is threatened by selective reporting or publication
of findings. For example, suppose a theory or body of evidence makes a strong prediction
about the sign or magnitude of a certain effect. Selective reporting occurs if scientists,
editors and reviewers believe effects to be the norm, and there is a bias against reporting
or publishing “unusual” results that contradict the norm. Selective reporting of this kind
slows down the crucial process of scientific self-correction.

We will refer to such selective reporting of scientific findings collectively as “publi-

cation bias.”

Publication bias can take on many forms. We discuss two possibilities of
relevance for the case of loss aversion. The first case is when journals prefer to see numer-
ical estimates of loss aversion close to a certain number, and are skeptical of estimates
that deviate far from that number. For there to be a bias, the preferred estimate by
journal editors must differ from the “true” estimate found in the population of studies
(see Borenstein et al., 2009).

A second form of bias concerns the overall significance of results. In this form, journals
prefer results that are “statistically significant” (usually demarcated by a p-value of 0.05)
and reject some null hypothesis (Andrews and Kasy, 2019; Brodeur et al., 2016; Brodeur,
Cook and Heyes, 2020; Chopra et al., 2024). From the viewpoint of the authors of this
paper, there is not a single specific test that can address these forms of publication bias
jointly. Even if there were, the particular issues with this data might make it difficult to
trust a single test absolutely. Instead, we will take a descriptive approach to both types
of publication bias.

Regarding the first form, in the context of loss aversion, one might suspect that
researchers preferentially report evidence for loss aversion (A > 1) and put evidence
for loss tolerance (A < 1) “in the file drawer” because such results contradict the initial
hypothesis (Rosenthal, 1979). Other sources of publication bias are possible. Researchers
in some disciplines may be motivated to undermine the “prevailing paradigm” of loss
aversion and preferentially create or publish low-\ results. Alternatively, some journals
may be interested in publishing results that conform to the pre-prospect theory economic
orthodoxy of no loss aversion. Even coming up with a null hypothesis is thus more
complex in our case than it would be when trying to simply ascertain the effect of a
treatment or its absence.

Funnel plots (see Section 4.2) are often used as a tool to examine bias from the
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FIGURE 9: Funnel plot. Notes: The vertical dashed line corresponds to no loss aversion A = 1.
The vertical solid line corresponds to the estimated mean Ag from model M2, 1.955. The vertical
dash-dotted line corresponds to the bias-corrected mean A from model M1-ext, 1.743. The z-

axis is cut off at 6, and the y-axis is displayed in the logarithmic scale for better visualization.

results of meta-analyses (Egger et al., 1997; Stanley and Doucouliagos, 2010). Figure 9
shows such a plot for all data points for which we have both an estimate of loss aversion
and an associated standard error (thus excluding estimates with imputed SEs). In the
absence of publication bias, the observations at the bottom of the graph, which have
higher precision, should be concentrated around the underlying mean estimate, indicated
by the solid vertical line. As we move up in the graph toward the top of the funnel, and
the precision of the studies decreases, we expect an increase in the degree of dispersion
around the mean estimate. In the absence of publication bias, this dispersion ought to
be symmetric around the mean. A larger number of observations in the upper right
side of the graph compared to the upper left side would then be an indicator of classical
publication bias, whereby estimates of loss aversion that fall closer to 1 and are not
significant are less likely to be reported.

At first sight, there would indeed appear to be such an asymmetry in the graph. We
clearly observe some large estimates in the upper right part of the graph, and hardly any
corresponding estimates in the upper left part. Even more pronounced is the large cluster
of studies at the bottom left corner of the graph. One might be concerned they indicate a
model of publication bias where the true A is around 0.8-1 but editorial bias favors publi-
cation of studies with higher estimates at lower precision. (In such a model, low-precision,
low-estimate studies would not be published because of the judgment of journal referees
or editors, and high-precision, high-estimate studies would not be published because they
are statistically improbable.)

To test asymmetry in the funnel plot through examining the correlation between
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reported estimates and their SEs, we extend the benchmark model M1 by allowing the

underlying mean for each reported estimate to depend systematically on the standard

i | Ao, 7, T, 56 ~ N ()\0 + 94/ 72+ se?, 7 + se?) , (M1-ext)

where v represents a potential publication bias and Ay 4+ y7 captures the average loss

error:

aversion coefficient correcting for the bias (since E[)\;] — Ao + 77 as precision goes to
infinity, or equivalently, se; — 0).'7 We find that the estimated mean 7 is positive
(i.e., 1.427 with a 95% Crl of [0.986, 1.872]), consistent with publication bias of a specific
form: higher X\ are less-precisely estimated and “small” X are hidden in the literature. The
“corrected” mean A is the mean Ay + 7 which is 1.743 with a 95% CrlI of [1.672,1.812].
Thus, the model suggests a relatively milder publication bias than Figure 9 might suggest,
but nonetheless a drop from the average A of our main estimate of 1.955 (model M2, Table
5).

The use and appropriate interpretation of funnel plot asymmetry has been debated,
and there are reasons to not take this estimate at face value. A crucial assumption
in measuring publication bias using these tests is that there is no correlation between
estimates and their standard errors (in the absence of publication bias and between-study
heterogeneity). In the context of the estimation of behavioral parameters in experimental
economics like ours, there are plausible reasons why the no-correlation assumption might
fail. First, it is possible that researchers choose parameters in their experiments (such
as a series of monetary outcomes used in a Multiple Price List) in a way that is tuned
to detect loss aversion coefficients that are close to 1 or 2. Second, the parameter A
must be larger than 0 by construction of the theory, and the reported estimates exhibit
non-normality. In each of these cases, the correlation between estimates and standard
errors can arise “mechanically” even without any publication bias.!®

A different way to examine a certain type of publication bias is to compare values
reported in published and unpublished papers. This method does not rely on assumed
independence between estimates and their standard errors. Publication bias by journals
implies that the estimates found in published papers could vary from estimates in un-

published working papers. Our meta-regressions (presented in Section 4.4) estimated

17This model is motivated by the regression-based approach for detecting and correcting for publication
bias in meta-analysis, introduced first by Egger et al. (1997) and established by Card and Krueger (1995),
Stanley (2005, 2008), and Stanley and Doucouliagos (2014). Here we follow the “extended random-effects
model” developed by Riicker et al. (2011), to be consistent with the hierarchical model we set up in Section

4.3.
18A similar point was raised by Matousek, Havranek and IrSova (2022), who did a meta-analysis of

experimentally measured individual discount rates which are typically bounded at zero. See also Sterne
et al. (2011) for more general discussion and recommendations for the interpretation of funnel plot

asymmetry in the context of meta-analyses in RCTs.
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FIGURE 10: The left panels (AC) show binned density plots for the z-statistics, and the right
panels (BD) plot the estimated “effect size” against its standard error. In panels AB, the
effect size is A — 1, corresponding to the null hypothesis of Hy : A = 1. In panels CD, the
effect size is A — 2, corresponding to the null hypothesis of Hy : A = 2. Notes: The plots
include 346 observations of aggregate-level and individual-level mean A, which have associated
standard errors reported in the paper. The solid red lines mark |z| = 1.96. Blue bars and
dots correspond to effect sizes that are significantly different from zero at the 5% level. The
bin width is 0.32 in panels AC. Outliers are not shown in the plots: the z-axis is restricted
to the interval [Q1 — 1.5 x IQR, Q3 + 1.5 x IQR] in panels AC and both axes are cut off at
Q3 4+ 3 x IQR in panels BD. Figure D.8 in the Online Appendix shows the “full” version of

panels BD, including outliers.

that observed loss aversion coefficients were 0.25 lower in working papers than in pub-
lished studies, roughly 1.73 for working papers (though the two credible intervals are
overlapping). Remember that the “true” value of lambda is best estimated by a weighted
average of the working paper estimate and the published paper estimate, so 1.73 can still
be thought of as a lower bound of the “true” estimate. It is perhaps reassuring that this
value is almost the same as the bias-corrected estimate of 1.743 discussed above.

A second form of publication bias involves a journal focusing too much on “statistically
significant” results. In this form, journals prefer to publish results that reject the null

hypothesis for the parameter of loss aversion, such as A =1 or A = 2, which could result
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in a distribution of test statistics that exhibits a discontinuity around a threshold for
statistical significance (such as z = 1.96). Gerber and Malhotra (2008a,b) introduced
a “caliper test” to identify a systematic bunching in the distribution of test statistics
within narrow bands around the threshold of statistical significance, but such an approach
requires more observations than we have in our sample. Absent the ability to perform
that test, we provide histograms of the z-statistics of our estimates in Figure 10. There
are two histograms, centered around the null hypotheses of A = 1 (panel A) and A = 2
(panel B). The figure does not appear to reveal any such spikes in the positive or negative
direction around values of 1 or 2 (which would appear around the vertical dotted line

representing zero deviation), regardless of which null hypothesis we consider.

5 Discussion

Loss aversion is an important concept in behavioral economics and has been applied
widely. This paper reports a meta-analysis of empirical estimates of the loss aversion
coefficient A. Our preferred specification indicates a mean A = 1.955 and a 95% credible
interval of [1.820,2.102]. Many other specifications are within 0.1-0.3 of this finding and
produce credible intervals that do not include 1 or 2.25. The former number is consistent
with no loss aversion; the latter is an early estimate from Tversky and Kahneman (1992),
which seems a bit too high. While there is a wide degree of heterogeneity across estimates,
in general, no single factor emerges from meta-regression that greatly changes estimated
loss aversion. Estimates derived from non-university populations, field experiments, and
means of individual elicitations (compared to aggregates) are correlated with a modest
increase in the loss aversion parameter.

A main takeaway from this paper is that the point estimate of A = 1.955 reported
above—estimated jointly with the uncertainty surrounding it—is the best current answer
to the question of how large the loss aversion coefficient truly is. It is not the ultimate
answer, however. One can indeed easily update this information with new evidence, ei-
ther by using this as a Bayesian (hyper-)prior in subsequent estimations of loss aversion,
or by combining the posterior from our meta-analysis with equivalent evidence from a
follow-up meta-analysis on studies not yet included into our sample, e.g., because they

appeared after our cut-off date.

We note two possible limitations to our study and, wherever possible, note where
successive studies could improve. First, a key concern with any empirical analysis is a
differential selection of reported data. The outlined criteria for inclusion in our dataset are
explicit and objective; we have no reason to believe, ex-ante, that it should be correlated

with our parameter of interest. However, our dataset is dominated by published studies.

30



To the extent that publication may vary with a reported A\ parameter, our analysis
may suffer from bias.!'® Because the parameter of interest here is bounded by zero and
positively skewed, it is difficult to use standard meta-analysis techniques like funnel plots
(see Figure 9) and regressions to measure publication bias. Further, an important test of
publication bias is whether unpublished working papers report reliably different results
than published ones. There appears to be a modest difference; unpublished papers are
about 0.25 lower which, notably, is still within the credible interval of our current estimate,
and may be due to chance, given the small sample. While our preferred estimate is
A = 1.955, based on the assumption that available studies are unbiased, researchers more
concerned about publication bias may want to consider lower values (e.g., A = 1.74).

Second, while we followed conventional practices of coding study quality (see Section
3.2), medical and health meta-analyses follow a more formal method to assess study
quality as “risk of bias.” Tens of thousands of Cochrane meta-analyses and systematic
reviews follow a standard protocol where multiple raters evaluate risks of bias (study
quality) on multiple dimensions such as the randomness of the treatment assignment
and the blinding of participants and researchers, among others.?? For instance, Hollands
et al. (2015) is a meta-analysis of experiments testing the causal effect of changing portion,
package, or tableware size on how much food, alcohol, or tobacco is chosen or actually
consumed. Their Figure 3 shows that of their 72 studies assessed, about one-third were
Low Risk, the modal percentage were Unclear Risk, and less than 10% were deemed High
Risk.?!

Meta-regression analysis is uniquely able to adjust for unobserved differences in re-
search quality across studies. If every study in our dataset contained multiple estimates,
a fixed-effect panel meta-regression would have eliminated any potential distortion that
differences in study quality may have on research findings (Stanley and Doucouliagos,
2012, pp. 112-117). Outside of this special case, the meta-regression can only control for

effects and is dependent on how the values of quality are coded. Accordingly, we have

19Tt is important to note that any research synthesis technique would suffer from this issue, not just

meta-analysis (Borenstein et al., 2009).
20Risk of Bias, introduced in 2008, is a tool widely used in Cochrane reviews and other systematic

reviews for assessing risk of bias in randomized trials (Higgins et al., 2011). Their general criteria are:
Randomness, blinding of participants and personnel (to treatment), blinding of outcome assessment,
incomplete outcomes (attrition), selective reporting, comparability of groups (a.k.a. balance check), and
consistency of intervention delivery. In each of these categories, there are a small number of precise
questions that are subjectively rated by assessors on a four-point categorical scale (Yes, Probably Yes,

Probably No, No) and then aggregated. See Sterne et al. (2019) for a revised tool (RoB 2).
2LA possible analogue exists within social science research (especially for experiments), forecasts of

likely replicability of a study’s findings. Altmejd et al. (2019) use data from actual replications to fit a
machine learning model. They are able to predict the degree of replicability with about 75% accuracy

from simple observable features of a study.
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recorded for each estimate the impact factor of the journal in which they were published
(if applicable). The impact factor value has little explanatory power in regard to our
results. We note (1) there is no meaningful correlation between journal impact factor
and reported (mean) A value; (2) inclusion or exclusion of journal impact factor does
not meaningfully change our meta-regression results. To the extent that journal impact
factor can be a proxy for study quality, we see no evidence to support the concern that

“low” quality studies are biasing our results.

In the introduction, we promised to return to subtle, important comparisons between
meta-analysis and narrative review. We will do that now.

Many readers will not know much about meta-analysis and might be skeptical about
it, especially in comparison to the familiar style we call “narrative review.” We anticipate
such skepticism and offer counter-arguments. The unabashed goal is to advocate for more
appreciation of the underdog method of meta-analysis.

We will start with fears about narrative review. Such reviews could be influenced by
biases in remembering recent (and perhaps socially-connected) salient, recently-encountered
data. Meta-analysis is a partial antidote.

There are two natural fears about meta-analysis. One is that it is somehow a mistake
to reduce all research in a field to a single value or a range of numbers. The second fear is
that simple apples-to-apples comparisons across studies neglect heterogeneity of methods
(see Borenstein et al., 2009, for a history of such critiques). These fears are natural, but
meta-analysis techniques have evolved to allay such fears.

The “single number” fear is misguided because humans—including scientists—value
simplicity. If meta-analysis did not provide a carefully and transparently derived value
(or range), researchers will imagine another simplified value, one way or another. It is also
often necessary to choose some value as an input into structural models within economics,
and to make power calculations during pre-registration. Furthermore, the purpose of this
or any meta-analysis is not to simply provide one number, but to demonstrate how such
numbers vary given other factors that categorize studies, using meta-regression techniques
(e.g., Figure 8). Stanley and Doucouliagos (2012) remind us that meta-regressions simply
take a well-known and established technique to understand variation in many kinds of
economic data, and just apply it to the data our own profession generates.

Next, we turn to a sharper comparison between meta-analysis and narrative review.
In a narrative review, there is no explicit attempt to canvas all studies based on stated
criteria. Instead, an expert reviewer chooses studies that seem to be of especially high
quality or pivot the scientific trajectory in a useful new direction. It is similar to a
historical analysis of progress in a field. To relate the two methods, a narrative review

is simply a meta-analysis with an altered subjective weighting system. The subjective
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weights are judgments by the reviewer of what findings readers should care the most
about, and the reasons why.

One analogy is sports commentary. Meta-analysis is like a “play-by-play” analyst who
describes every action on the field with an even tone. A narrative review is like a “color
analyst” who picks out certain plays that are unusually important and explains why they
are special. The color analyst adds the dramatic emphasis that the play-by-play analyst
suppresses. The analogy should make clear why both kinds of commentary are useful;
the two together are better than each one alone.?? A similar analogy is to the proud
divide in newspapers between the “news” side (meta-analysis) and “opinion” (narrative
review).

A tricky, interesting question is what meta-analysis and narrative review can say about
influential “breakthrough” papers. Narrative reviews often remark on how a particular
study represents a breakthrough in using new methods or presents a surprising finding
that should be prioritized to be studied further. Because meta-analysis is backward-
looking, it is not ideally-equipped to identify useful breakthroughs. Because the narrative
review is subjective, it can look forward and might do better.

An example is De Martino, Camerer and Adolphs (2010). They found that two pa-
tients with damage to the amygdala area of the brain were not averse to losses at all.
This is a tiny finding with a large standard error; it’s a teaspoon of water added to a
swimming pool. Meta-regression is worthless because there is no power to detect an
“amygdala damage” vs. “no amygdala damage” difference if the study were added to our
corpus. But despite the tiny n = 2, it is a clue that could shed light on the fundamental
mechanism underlying loss aversion, and hence deserves further study. Narrative reviews
may miss some opportunities to amplify such interesting studies too, but meta-analysis

will always neglect them.

We will conclude with one idea about how meta-analysis can guide future research.
Meta-regression can actually pinpoint where studies are plentiful and where an additional
study would have the greatest new effect on collective knowledge. A low standard error
on a meta-regression coefficient means we do not need to learn more. A high standard
error means that we do need to learn more. From our dataset, studies (i) other than
lab and field experiments, (ii) focusing on specific, non-University student populations,
(iii) on continents of South America, Africa, and Oceania, (iv) involving rewards not
expressed in monetary terms, (v) obtaining preferences in methods other than sequential

binary methods, (vi) using utility functions other than CRRA with equal curvature for

22 Another useful analogy comes from performance evaluation in personnel economics. It is well-
known Baker, Gibbons and Murphy (1994) that objective and subjective measures of performance can be
complements. Objective measures rein in over-the-top subjective evaluation, and subjective evaluations

can add idiosyncratic information that objective measures are blind to.
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gains and losses, and (vii) with loss aversion specifications other than Kahneman and
Tversky are the areas where we have uncovered the least data. Interesting new findings
about the loss aversion parameter are ex ante more likely to be in those areas. The old

cliché “we encourage future research in these areas” now has empirical backing.
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